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Abstract

Graphs of small treewidth resentle a tree in a certain (precise)sense.Many
computationally hard graph problemscan be solved e+ciently on graphs of
small treewidth usinga\tree decompsition," which represems the construc-
tive aspect of treewidth. However, computing minimum-width tree decompo-
sitions is NP-hard in general,but for xed treewidth, there exist algorithms
with polynomial running time.

In order to ewaluate the practical usability of tree-decompsition algo-
rithms for graphsof arbitrary treewidth, we have implemerted se\eral fun-
damenal algorithms related to computing tree decompsitions. We presert
the theory behind solving graph problems using tree decompositions and
showv how it can be applied in practice to compute \path decompsitions."
Then we give a survey of the tree-decompsition algorithms consideredand
discusstheir practical value on the basisof bendimarks.

Test graphs were produced using a suite of graph-generatingprograms
that we deweloped as part of this thesis. Our experimerts indicate that the
algorithmsfor graphsof unrestricted treewidth are not viable for input graphs
with treewidth beyond the scope of presen special-purposealgorithms, which
exist for treewidth up to four.
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Chapterl

Introduction

\How much doesa given graph resentle a tree?" | this questionhasled
to the notion of the treewidth of a graph and to the related notion of tree
decompmsitions, which represen the constructive content of the treewidth
measureof a given graph. In this work, we descrilke and analyzeapproades
to derive small tree decompositions of arbitrary graphs.

Treesare very simple graphs: many graph problems can be solved ef-
“ciently on trees, becausethese problems often require only a bottom-up
or top-town traversal of the nodeswith constart work at eady node. Ask-
ing how similar an arbitrary graph is to a tree is motivated by the hope of
‘nding ezcient algorithms that exploit the \tree-lik e" structure. Consider
for examplethe INDEPENDENTSET problem: givena graph G = (V, E) and
an integer /, is there a vertex set W C V of size/ sud that no two ver-
ticesin W are adjacert? This problem is NP-complete on generalgraphs
[Kar72], but on atree T = (V, E), we can solwe it in linear time in one
bottom-up pass: We choosean arbitrary » € V asroot and let T}, = (V,, E,)
denote the maximal subtree of 7" with root =z € V;
proceedingfrom the leavesup to the root, we mark eat root r
node x with a pair of integers(i, ), wherei is the size
of the largestindepender setin 7, that includesz and
j isthe sizeof the largestindependen setthat doesnot
include z. Leavesgetlabeled(1, 0); for inner nodes,we
caneasilycalculate(z, j) from the correspnding values
of the children (seeFigure 1): The largestindependen setwith z in T}, is
the union of {z} and largestindependen setsin the subtreesrooted at the
children of = sothat ead independer setin a subtreedoesnot include the
root of the subtree. The largestindependen setwithout x in T, is the union
of the largestindependert setsin the subtreesrooted at the children of z;



(6,7)

(1,0)

Figure 1. A tree with node labels (¢, j) indicating the size of the largest
independert setin the subtreewith the root (7), and without it (7).

if for the root of T', i or j is greater than /¢, then the algorithm accepts,
otherwiseit rejects.

For computing information about its subtree T),, ead node = usesthe
information from its children. Can this dynamic-programmingtechnique be
extendedto graphsthat in someway look like a tree? The graph below on
the right is derived from the tree on the left by replacing ead node with a
triangle of verticessothat the triangles of adjacent nodessharean edge(and
no edgeis sharedmore than once):

We now explain how to extend the algorithm to solve INDEPENDENTSET 0N

\tree-lik " graphsderived by the \triangle construction" above. In addition

to agraph G = (V, E), the input alsocomprisesthe instructions for building

G, namelyatreeT = (X, F) andamapping B : = — {u,v,w} that ass@iates
tree nodesx with trianglesu, v, w in the graph G. The computation proceeds
bottom-up in 7" (with aroot chosenarbitrarily), andnodesx € X getlabeled
with information about certain subgraphsG, of G. Informally speaking, G,

is the subgraphcorrespnding to 7, in the tree:



T 4 chosenroot r
T,

a,

More precisely for leavesz, GG, is just the triangle B(x), and for inner tree
nodes, the graph G, results from joining the graphs GG, correspnding to
children y of x to the triangle B(x). For the root r, G, is the ertire graph.
Information about large independen setsin G, is stored with z, just like
the pair (¢, j) for T, in the caseof a tree. Note that for ead child y, the
subgraph G, sharesexactly two verticeswith B(z). Independen setsof G,
can be restricted to independen sets of G,; the restriction of the largest
independent set of G, will be an independen set of G, that is the largest
one satisfying the set-menbership status of the two boundary vertices. It is
therefore suzcient to label nodesz with three integers(iy,io,i3) indicating
the sizesof the largest independent set in G, when none, the rst or the
secondboundary vertex must be in the independert set. Finally, if and only
if at the root node, the maximum of the integersis at least ¢, we know that
there is an independen set of the required size/.

We have thereforejust extendeda dynamic-programmingalgorithm solv-
ing a graph problem on treesto a classof somewhatmore complexgraphs,
maintaining the linear running time. In doing so, we made a distinction
betweenthe graph GG and its \underlying" tree T'; constart-time operations
at nodesz of the tree producedinformation about partial solutionson sub-
graphs G, correspnding to subtreesT, with root x. Rather than storing
complete solutions, we kept only characteristic data|the sizeof the largest
independent setfor ead con guration of included boundary vertices.

The outlined approat can be applied to a considerablylarger class of
graphsand problems. Graphsto which our algorithm can be adapted are

e graphsthat allow onetriangle edgeto be sharedby seeral children:

In this case,there is no longer a one-to-onecorrespndencebetween
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the graph and the tree. For instance,the graph above and the one on
the left below both originate from the tree on the right.

A\
Therefore for ead tree node, we needto record where in the parert
triangle the two new edgesof the graph are connected. The extension

of the algorithm itself is straightforward; speci cally, the linear running
time is presened.

graphsresulting from \triangle graphs" by edgedeletion:

ol

If the edgebetweentwo boundary vertices is missing, they can both
be part of alarge independert set; hencewe needto extend the triples
(i1,12,13) at tree nodesz to quadruples(iy, is, i3,74) Wherei, indicates
the sizeof the largestindepender setin G, cortaining both boundary
vertices. After edgedeletion, the tree from which the graph was con-
structed is no longer obvious and must thereforebe supplied as part of
the input.

graphs constructed by using <> = K, or £ = Kj; or larger complete
graphs K., instead of triangles:

If we use K1, there are k vertices on the boundary between parernt
and child, that is, parert and child overlap on & vertices. For eah
of the 2¢ subsetsS of those k vertices, we needto record the size of
the largest independent set cortaining S. It should not come as a
surprisethat k& cortributes an exponertial factor to the running time
of our algorithm|an y graph with n = k£ + 1 verticesis a subgraph
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of K,, = K, and the INDEPENDENTSET problem is NP-completeon
generalgraphs.

The classof graphsat which we arrive by applying all three generalizations,
that is, by choosinga &, not restricting the degreeof tree nodesand taking
the closurewith respect to edgedeletion, will be de ned later as \partial
k-trees" [Ros74 ACP87] or \graphs of treewidth at most £" [RS83 RS86].
The treewidth & will be taken asa measureof how much a graph resentles
a tree. We support this claim with the following remarks:

e Collectionsof trees, called forests, are perfectly \tree-lik e." They have
treewidth £ = 1.

e With growing k, we employ larger and larger complete graphs K,
in building graphs of treewidth k. These complete graphs are very
much di®eren from trees. Moreover, if we look at graphs of growing
treewidth (laid out using a spring-enbedder method), they intuitiv ely
look lessand lesslike trees:

e The running time of our algorithm for INDEPENDENTSET dependsex-
ponertially on k, thus being linear for trees and graphs of constart
treewidth and exponertial for generalgraphs. For generalgraphs, a
tight bound on k£ is n — 1 asit can be shown that K, cannot be con-
structed from a tree using K,, with m < n (this is a consequencef
Lemmallin the next chapter).
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Why do we needto supply the underlying tree with the input to our algo-
rithm? If we delete edgesgradually from \triangle graphs," the underlying
tree disappearsfrom our perceptionwhen we lay out the graph in a natural
way (again using a spring-enbedderlayout method):

i

Squeezingcycles will give us potertial embeddings of a partial \triangle
graph" into a completeone:

For generalk-treeshowewer, the situation appearsto be much more dixcult.
What tree structure we have at the start of the following examplegets lost
by removing edges(k = 3):

complete

—40%edges

Let us now take a step badk and considerhow the obsenations about re-
senblanceof graphsto treesand its algorithmic use t into the \big picture."
Clearly, most graphs do not resenble trees|th us talking about algorithms
for \graphs of boundedtreewidth" meansto talk about algorithms that do
not work on all graphs,but only on a subsetof generalgraphs. Why should
we put up with sud alimitation? Our exampleproblem, INDEPENDENTSET,
is NP-hard and thereforeis unlikely to have an excient, i.e., polynomial-time,
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algorithm. Two approateso®erremedy First, we may decideto settle for
the second-lest solution and seekapproximation algorithms. Second,and
this is the route we took in solving INDEPENDENTSET on partial k-trees,
we can restrict the set of permissibleinputs so that the restricted problem
can be exciently solved. Obviously, we want to make this restricted input

classaslarge as possiblewhile maintaining a small running time. Preferably
the restriction should be in a certain way natural, parameterizedto form an
ascendingchain R, C R» C ... of more and more generalinputs (so that for
ewvery input G, thereis anindex : with G € R;) and applicableto a general
classof problems. The classe®f graphsof treewidth at most £ meetall these
goals. Keepingk constart, we have a linear-time algorithm for the INDEPEN-

DENTSET problem, and by choosing k& appropriately large, we cover a rather

large classof graphs, including for example series-parallelgraphs (k = 2)

[Bod93 and /-outerplanar graphs(k = 3¢ — 1) [Bod93], but alsothe cortrol

°ow graph of imperative programming languagegTho97]. Graphs are ubig-

uitous conmbinatorial structures, and the dynamic-programming technique
for solving problemsusing a tree decomposition extendsto a large classof
problems;Courcelle[Cou9Q Bod93] pioneeredin formulating logical systems
in which ead proposition about a graph can be cheded exciently on graphs
of boundedtreewidth.

Howewer, there are drawbadks and issuesthat we have not yet addressed.
We already noted that letting k& grow with the graph size,i.e., k = |[V| -1,
leadsto a classthat encompasseall graphsand to an exponertial-time algo-
rithm. In general,the time complexity of algorithms operating on graphs of
treewidth £ will depend at leastexponertially on k, sincefor k£ = n — 1 they
reduceto exhaustivwe searti. Worse,the problem of determining treewidth
is NP-hard [ACP87], and thus computing minimum-width tree decompsi-
tions of arbitrary graphsseemsto be out of question. Still, computing the
minimum-width tree decomposition of a graph with a known bound % on
the treewidth is possible,evenin time linear in |V|, but, again, exponertial
in k¥ [Bod964. Furthermore, the problem of computing tree decompsitions
exhibits a property called fized-parameter tractability [DF95]|there exist al-
gorithms with running time polynomial (evenlinear) in n wherethe degreeof
the polynomial is independert of k, and k canonly in°uencethe \constants."

From a theoretical point of view, we might be quite satis ed with these
results. After all, we cannot really expect much more from NP-hard prob-
lems. On the other hand, the practical value of theseresultshasnot yet been
investigated. They de nitely merit an assessmerof practicality, becausehe
problemssolable exciently on graphsof boundedtreewidth have plenty of
real-world applications, and someapplications provably produce only prob-
lem instanceswith graphs of boundedtreewidth. The goal of this master's
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thesisis to shedlight on the question of practical usability of generaltree-
decomposition techniquesand algorithms for computing tree decompsitions.
To this end, Chapter 2 focuseson the dynamic-programmingtechnique using
tree decompositions;in Chapter 3, we discussa major application of the ap-
proach, namely how to compute\path decompositions.” Chapter 4 preserts
the candidatesfor practical tree-decompmsition algorithms, amongthem Bod-
laender'slinear-time algorithm. Evaluating implemertations meansproduc-
ing and executingbendmarks; in Chapter 5, we descrike methods to create
test inputs and shav how our implemenation of the tree-decompmsition al-
gorithm by Arnborg, Corneil, and Proskurowski [ACP87] performson them.
In Chapter 6, we presern our conclusionson the practicality of the various
tree-decompsition algorithms and give a short critique of our developmen
ervironment. Further information on the software can be found in the ap-
pendix.
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Chapter2

UsingTreeDecompsitions

2.1 Preliminaries

In this section, we will give fundamertal de nitions and properties related
to tree decomposition; most of these are drawn from [BK96] and [Bod97],
others follow [BH98]. Graphs will always be undirected, nite, simple, and
without loops. Somebasicnotation is xed in the following de nition:

De nition 1 (Graphs and Trees).

(1) G = (V,E) is called a graph if V is a nite set of vertices and FE is
a subsetof the set {{u,v} : u,v € V andu # v} of unordered pairs
{u,v} from V, which are called edges and which are sometimeswritten
as (u,v).

(2) Foru,v € V,wecalluandv adjacent if there existsan edge{u, v} € E.
We also say that u is a neighbor of v. The degree of a vertex is the
number of its neighbors.

(3) A graph G°= (V° EY is called a subgraph of G if V°C V and E°C E.
G is alsocalled a supergraph of G°

(4) For VOC V, the subgraph G[VY induced by V°is the subgraphwith the
vertex set V0 and the edgesE®= E N {{u,v} :u,v € VPand u # v}.

(5) A graph G = (V, E) is complete, if there is an edgebetweenevery pair
of vertices. A completesubgraphwith £ verticesis called a k-clique.

(6) A path in G is a subgraphP = (V° E9 of G where VV° can be written
asV%= {v;,...,v,} sothat E°= {{v;,v;y1}:1<i < p}. We require
that V°+ () and dene the length of P asp — 1. P is called a path
between u and v if v; = v and v, = v; note that in our de nition, a
path doesnot have a distinguisheddirection.
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(7) A graph G is connected, if there exists a path betweenany two of its
vertices;a connected component of G is a maximal connectedsubgraph
of G.

(8) A tree T = (X, F) is a connectedgraph with |F| = |X|— 1. A subtree
is a connectedsubgraphof a tree.

(9) A rooted tree T = (X, F,r) is atree with aroot r € X. The depth of
anode x € X in arooted tree is the length of a shortest path from x
to . The neighbors of z € X with greaterdepth than = are called the
children of x.

(10) The root of a subtree T° = (X° F9 of a rooted tree T' = (X, F,r) is
the node » € X°with the smallestdepth. The subtree T, rooted at x
of arooted tree 7' = (X, F,r) is the largest subtreeof 7" with root .

Lemma 2. In a tree, there is exactly one path between any two vertices.
Moreover, betweentwo disjoint subtreesT; = (Vi, E,) and T3 = (V5, E»),
thereis exactly onepath P = (V° E9 with V°= {v,...,v,} sothat V,;NV°=
{vi} and Vo N V°= {v,} (and E°= {{v;,v;11} 11 <i < p}). 2

Unlessotherwisenoted, for G = (V, E), wesetn = |V/|. When talking about
a graph G = (V,E) and an assaiated tree 7" = (X, F'), the word vertex
will be resened for elemerts of V' whereasnode or tree node will be usedfor
elemerts of X.

To make use of the \tree structure” of the input graph G, the INDE-
PENDENTSET algorithm presened in the introduction needsto know how G
derivesfrom a tree. A \tree decompmsition” represets this information in a
format suitable for algorithms exploiting the boundedtreewidth. Recallthe
strategy we used: Proceedingin the underlying tree from the leavesup to
the root, we computedat eadt tree node x the sizesof largeindependert sets
in the subgraph G, correspnding to the tree 7, rooted at x. In addition
to the sizesproducedby the children of x, thesesizesdependedonly on the
part of G, in which solutionsfor G, of children y of z could intersect. Thus
the part of GG, relevant to the computation at = is preciselythe complete
graph K., (or what remainsof it after edgedeletion) we put for = during
the construction of GG; a mapping B from z to the correspnding \triangle"
K1 then is what we needin the generalcaseaswell: A mapping from tree
nodesz to the correspnding k£ + 1 verticesof G or, equivalertly, for eath
tree node » abag B, C V. This leadsto the following de nition:

De nition 3 (Tree Decomposition). A tree decomposition of an undirected
graph G = (V,E) isatreeT = (X, F) with bagsB, C V for eah = € X
sud that
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S
1) LxB.=V

(2) for all graph edges(u,v) € E, there is a tree node x € X sud that
u € B,andv € B,

(3) for all tree nodesz, y, z € X: if y is on the path from x to z in T, then
B,NB, CB,.

If T is a rooted tree, we call (7', { B, }.2x) a rooted tree decomposition.

Someexplanationsof the conditions are in order. (1) is clear, sincewe want
to cover all vertices of the graph. Each edgemust be consideredat some
point during the computation, hencecondition (2). Condition (3) enforcesa
locality constrairt; we may look at (3) in the following way:

Proposition 4. Condition (3) in the de nition of tree decompsitions can be
replacedby

(39 for every vertex v € V, the nodescorresmnding to bagscortaining v
form a connectedcomponert of 7.

We will assumethat for eatcy bag B, C V, the correspnding tree node z
is known, which allows us to identify tree nodesx and their bags B,; the
matching picture of a tree decomposition then consistsof a tree with bagsas
nodeswhere overlapping bagssharean ancestorcorntaining the overlap.

Proof. Considerthe subgraph7'(v) of T induced by the bagsconaining v €
V. If T'(v) is not connected,there is a path betweentwo of its componerts,
which hasatree nodey that doesnot cortain v, i.e.,v € B,. This cortradicts
(3), henceT'(v) must be connected.

Conversely if every vertex occursin a connectedcomponert of 7', then
for y on the path from z to z, B, cortains all v for which 7'(v) cortains both
x and z. Therefore B, O B, N B.. 2

De nition 5 (Treewidth). The width of a tree decomposition is
max|B,| — 1.
2 X
The trecwidth of a graphis the minimum width of all its tree decompositions.

As desired,treesand forestshave treewidth 1[just put every pair of adjacert
verticesin a bag of size2 and make eadh new bag (but the rst) adjacen to
an older bag with which it sharesa vertex or to any bag, if there is no older
bag with which it sharesa vertex.

The notion of tree decompsition arosein the cortext of analyzing a
graph. If we take a constructive approad, as we did in the introduction
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when we consideredextensionsto the triangle construction, we arrive at
the conceptof k-trees,which by Proposition 8 below are maximal graphs of
treewidth k.

De nition 6 (k-Trees). The class of (total) k-trees is characterized induc-
tively asfollows:

(1) The completegraph with k£ + 1 vertices, K1, is a k-tree.
(2) f G= (V,FE) isak-treeand B C V is a k-cliquein G, then the graph

G%= (Vu{v}, EU{(u,v) :u € BY})

that results from adding a new vertex v adjacert to all verticesof the
basis B of v, is a k-tree.

(3) Only the graphsde ned by (1) and (2) are k-trees.

If G = (V,E) is ak-tree, then any graph G°= (V, E9 with the samevertices
and a subsetof edgesE° C E is a partial k-tree.

Adding a new vertex yields a new (k + 1)-clique;if we put ead of theseinto
a bag, thesebags t together like a tree. \Thinning out" k-treesyields all
possibletrees of treewidth &:

Proposition 7. A graph G = (V, F) is a partial k-tree if and only if it hasa
tree decompsition of width at most k.

Proof. A k-tree has a tree decompsition of width k: The rst (k + 1)-
cligue makes up a bag; wheneer we add a vertex v, we put the resulting
(k + 1)-cliqueinto a new bag and connectthis bagto any existing bag that
contains the k-clique B to which v was made adjacert. This yields a tree
decomposition, sincethe bagsform a tree, all verticesand edgesare covered,
and verticesoccur in connectedcomponerts of the tree. Moreover, this tree
decompsition has bagsof sizek + 1 and thus width k. A partial k-tree G
is the result of deleting a number of edgesfrom somek-tree G, thereforea
tree decompsition for G is alsoa tree decomposition for G.

Given a graph G = (V, F) and a tree decomposition of width at most
k, we rewrite the tree decompsition so that we can useit to construct a
supergraph Gy = (V, E U E,) that is a k-tree. Our goal is to arrive at a
tree decomposition in which eat baghassizek + 1 and whereadjacert bags
di®erin exactly two vertices. Given sudt a tree decomposition, we turn the
bagsinto (k + 1)-cliquesby inserting new edgesand thus get a k-tree: we
can construct the augmerned graph starting from any bag and performing a
depth- rst traversalof the tree, adding for ea non-visited neighoor its new

17



vertex to the graph and making the new vertex adjacer to a k-cliquein the
current bag.

Any tree decomposition can be adjusted to the required form, maintain-
ing its width: Start by cortracting adjacert bagsthat are equalor whereone
is cortained within the other. Choosearbitrarily a root of the tree decomp-
sition, and complemen bagswith lessthan k + 1 verticeswith verticesfrom
their parert bags. Now adjacert bagsdi®erin at leasttwo verticesand their
sizeis k + 1. Finally, insert new bagsbetweenbagsthat di®erin more that
two vertices. 2

In the following sensea k-tree is a maximal graph of treewidth &:

Proposition 8. If G = (V, E) is a k-tree, then the graph G°= (V, EU{(u,v)}),
which is obtained from G by adding a new edge(u, v), hastreewidth & + 1.
Proof. A k-treewith n = |V| verticeshas'k;1¢+ (n—(k+ 1)k = nk—"' ’“‘2”¢
edges.If G°had treewidth k, it would be a subgrapljof some#k-tree. This is
impossible,becauseG® has | EU{(u, v) }| = nk — l’“fgl + 1 edges.Howe\er, a
width- £ tree decomposition of G can be turned into a tree decompsition of

GO of width k + 1 by adding vertex « to all bags. 2

Further fundamenal properties of tree decompositions are preserted in the
following lemmas. An immediate consequencef the construction in the
proof of Proposition 7 is Lemma9:

Lemma 9. Every graph G = (V, E) has a tree decomppsition of size £( n),
and any larger tree decomposition can be reducedto linear sizein time pro-
portional to the sizeof the given tree decomposition. 2

Howewer, nding minimum-width tree decompsitions of generalgraphsis
NP-hard. The TREEWIDTH problemtakesasinput a graph G and an integer
k and decideswhether G has treewidth at most k. Arnborg, Corneil, and
Proskurowski [ACP87] proved

Theorem 10. TREEWIDTH is NP-complete. 2

Lemma 11 and 12 belowv give conditions under which certain vertices are
guararteedto sharea bag; Lemma 1l in particular is an important tool for
reasoningabout tree decompositions.

Lemma 11. Let K beaclique of G. In any tree decommsition of 7, there is
a bag that contains all verticesof K.

18



Proof. Fix a tree decompsition (7' = (X, F),{B.}) of G. For any vertex v
of G, the subgraphT'(v) of tree T induced by the bagscortaining v is (by
Proposition 4) a subtreeof 7. We needto prove that the intersection of all
T(v), forv € K, isnon-empty. Choosingan arbitrary node of T" asroot turns
ewvery subtree T'(v) into a rooted subtree and we can talk of the depth of a
nodein T. Let vy € K be a vertex whosesubtree T'(v,) hasthe root with
the greatestdepth amongthe roots of subtreesT'(v), v € K. Becausev is
adjacen to all v € K, T'(vy) and T'(u) overlap, and becausel’(vy) hasthe
deepest root, they must overlap at this very root. This holdsfor all u € K,
thereforethe bagcorrespndingto the root of T'(vy) cortains all verticesfrom
K. 2

Lemma 12. Let G°= (UUW, E9 be a complete bipartite subgraphof G =
(V,E), ie., E°= {(u,w) :u € Uw e W} C E. Thenin any tree decomp-
sition of GG, at leastone of U and W will be contained in onebag.

Proof. We usethe notation from the previousproof. For u € U andw € W,
T'(u) and T'(w) overlap becauseof the edge(u, w). Assumethere are uq, u, €
U with T'(uy) and T'(us) disjoint. Let P bethe path in 7' that connectsT’(u4)
and T'(ug). For any w € W, T(w) must have non-emply intersection both
with T'(u;) and T'(us), henceit must be a supergraph of P. Consequetly,
all T'(w) overlap on P, sothere is a bag cortaining all w € W. 2

2.2 The Generic Tree-Automaton Technique

We will now presert and analyze a \generic" algorithm for determining a
graph property (sud asthe existenceof a large independert set) usinga tree
decompsition. The presened form of the framework is due to Bodlaender
and Kloks [BK96, Bod97]; the INDEPENDENTSET problem of Chapter 1 will
sere againasan example.

Our setupis asfollows (seeFigure 2): As input, we aregivenagraphG =
(V, E) and a tree decompsition (T' = (X, F),{B.}.2x). We chooseany tree
node r asroot of T, sothat (7', {B,}) becomesa rooted tree decompsition
and T}, can be de ned asthe maximal subtreeof T rooted at z. Every node
x has a bag B,, which we identify with the subgraph G[B,] of G induced
by the vertices of B,. Similarly, the subtree T, givesrise to a vertex set,
the union of all bagsin T, which againis iderti ed with the correspnding
subgraph:

De nition 13 (Subgraph at a Tree Node). For agraph G = (V. E), let (T =
(X, F,r),{B.}.2x) be a rooted tree decompsition with root » € X. The
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subgraph G, at tree node v € X is the subgraphof G inducedby the vertices
in the bagsof T, = (X, F,), i.e.,
h [
G.,=G {B,:yeX,} .

Moving in T from the leaves up to the root, the correspnding subgraphs
G, getlarger and larger, up to G, = G. At node z with children v, ..., y4,
the graph G, is the union of B, and G,,,...,G,,. The ideais to conbine
solutions on eadh of the G,, to solutions on G,, taking into accourt the
structure of B,. For many graph problemsit is possibleto de ne the notion
of a partial solution on a subgraphG, asthe restriction of a solution on G
to G, sothat

e the partial solutionson G, = G include the actual solutions to the
problem, and

e partial solutions on ead subgraphG,, at the children y; of = can be
combined to partial solutions of the subgraphG, of their parert z.

For INDEPENDENTSET, We sav already that partial solutions are large in-
dependent sets;for HAMILTONIANCIRCUIT|the problem of nding a path
with adjacert endpoints that visits all verticesof G|la partial solution on
G, is a setof disjoint pathsin G, that cover all verticesof G, and have their
endpoints in B,, or a complete Hamiltonian circuit [Bod97]. The combina-
tion of partial solutionsis facilitated by the property of tree decompositions
that only verticesin B, canoccurin more than onesubgraphG,,:

Lemma 14. Let G = (V, F) be a graph with a rooted tree decompsition
(T = (X, F,r),{B.}.2x).- Let z be atree node with children y;,...,y4. If
the vertex v € V' appearsin both G, and G \ G, or if v occursin at least
two of the subgraphsG,, ,...G,,, then v must be in the bag B, of node z.
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Cornversely if somevertex v € V' is cortained in bagsB, and B, then it also
belongsto the bag of the lowest commonancestorof y and z. 2

Sowhen combining a partial solution on eat G,, to partial solutionson G,
\in terference"betweenthe partial solutionsonthe G,, canonly occur via the
verticesin B,. Of course,somepartial solutions on subgraphsG,, may be
incompatible with ead other and cannot be combined to a partial solution
on G,. Yet if there is a partial solution on G, we require that it can be
constructed from partial solutionson the ¢G,,. Sincewe proceedbottom-up
in the tree, we cannot know which partial solution at ¢, cancortribute to a
partial solution on G, thereforeat eat node, we must be able to compute
all partial solutions.

What information about partial solutionsis passedupwardsin the tree?
Evento solve decisionproblems,the combination stepneedsinformation with
constructive cortent, suc aslarge independen setsas possibleparts of the
largestindependernt set. The tree will usually have £( n) nodes(Lemma 9),
henceto get a linear time bound, the algorithm may only perform constart
work at ead node. Passingertire partial solutions|e.g., independen sets
in the subgraph|to parerts is not an option, becausethere may be expo-
nertially many and producing all possiblecombinations would take expo-
nertial time. Therefore,information passedalongthe edgesof the tree must
be restricted to characteristics of partial solutions so that the number of
characteristics at any tree node is bounded by a polynomial. How can we
arrangethat? Returning to our example,we noted that independert setsof
subgraphsG,, may interfere only on verticesfrom B, (Lemma 14), therefore
characteristicsfor independert sets/ in G, are chosenas pairs (s, 19 with s
the sizeof the independert setand I°= 1N B, the restriction of I to B,. For
a tree decomsition of width k, there are at eac node at most 218:1 < 2k+1
di®eren pairs (amongpairs with the sameset I° we discardall but onewith
the greatestvalue of s). Sincewe considerk to bea xed parameter,we have
at most 28! = O(1) di®eren characteristics. Generally whenwe have found
an O(logn)-size characteristic for a problem, we know that there is only a
polynomial number of characteristicsand hencea polynomial time algorithm
combining characteristicsfrom the leavesup to the root.

A characteristic should corvey relevant information about a solution to
the problemrestricted to a subgraph. As sud, a characteristic at somenode
x indicatesthat there is a solution to the problemin G, ; characteristics at
the root node r thus stand for solutionsto the problem on the ertire graph
G, = G. To decidewhether a characteristic exists at the root, we must
considerall conmbinations of characteristicsof the children of the root, which
in turn result from the characteristics of their respective children. So we
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proceedbottom-up in the tree computing all characteristicsat ead node|
the full set of characteristics of the node|lest we miss somecharacteristic
that represeis a necessarypart of every solution on the full graph.

Finding the right classof characteristicsfor a given problem is one half
of the problem of applying the generaltechnique. The other half is to de ne
how characteristicsare combined during the computation on the tree 7. To
this end, the rooted tree decomppsition is simpli ed sothat there are only
four typesof tree nodes:

Start Nodes areleavesof the tree and their bagscorntain only a singlevertex.

Intro duce Nodes have exactly one child. Their bag contains all the vertices
of the child's bag, plus a single newly \in troduced" vertex.

Forget Nodes have exactly one child. Their bag cortains all the vertices of
the child's bag exceptfor exactly one\forgotten” vertex.

Join Nodes have exactly two children, whosebagsmust cortain exactly the
samevertices. The bag of a Join node cortains the samevertices as
the bagsof the children.

In Section2.4,it will be shavn how any tree composition can be transformed
into this form without increasingits width and that the sizeof the resulting
tree decompsition remainslinear in n. De ning the combination of char-
acteristics now meansto give four constar-time algorithms, one for eath
type of node, which on input B, and «all characteristicsat the children of z
produce all characteristicsat node . For INDEPENDENTSET,

e the algorithm for Start nodeswith vertex v returns the two character-
istics (1, {v}) and (0, 0);

e for Introduce nodes = with new vertex v, we take all characteristics
(54, ]5) of the single child y and passthem on, including a new char-
acteristic (s, + 1, IJU {v}) if 17U {v} is an independert setwithin B,
(and hencewithin G,).

e if z is a Forget node, we modify all the characteristics (s,, [9 of the
child y to (s,, I°\ {v});

e at Join nodes,we considerall conbinations of two characteristics(s,, [5)
and (s, I9) of the children y and z, respectively, and chedk whether
I9=I?. In that case,a characteristic (s, + s, — ||, I]) is produced.

At tree nodes x, combination proceduresshould only produce characteris-
tics C, for which a partial solution S, on the subgraph G, exists|w e call
this the correctness of combination procedures.Moreover, combination algo-
rithms must also have the completeness property: At ead tree node x, the
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characteristic C, of ewvery partial solution S, on the subgraph G, must be
found. This is equivalert to requiring that at ewery tree node the full set of
characteristicsis computed. Correctnessand completenessre usually proved
by induction on the tree: The Start-node combination algorithm must yield
all characteristics of solutionsin the single-\ertex graph, and for the other
node types, it must be shovn that the conbination algorithms produce full
setsof characteristics from the full set of their children. For the INDEPEN-
DENTSET combination proceduresabove, the correctnessand completeness
proofs are straightforward.

In the terms of nite-state automata theory, the genericapproad can
be interpreted as the construction of a tree automaton A = (Q,8,Q7,9)
(our notation follows [Sei9(). The set of states () is the set of all possible
characteristics;the ranked alphabet 8 = §,U8 U8 is the disjoint union of
tuples describingthe possiblenodesof a tree decomposition of width £,

§, = {(Start,v) ;v avertex}

§, = {(Introduce G,v) : G graphwith at most k& + 1 vertices,with v} U
{(Forget G,v) :G graphwith at most k vertices,without v}

§, = {(Join, G) : G graph with at most k + 1 vertices}

sothat tree decompsitionsof width % (and the graphthat they descrike) can
be expressedswords of the tree languageTs,, which is inductively de ned as
cortaining all symbolsfrom §, all wordsa(t) with a € 8, andt alreadyin 7%,
and @I words a(ty,t2) wherea € 85 and t1, t, € Tx. The transition relation
0 C Z:a Q x 84 x Q% contains for Start nodesz with vertex v all tuples
(C., (Start, v)) where C,, is any characteristic at this node. For Introduce
nodes z with child y and introduced vertex v, § has all transitions of the
form (C;, (Introduce B,,v), C,) forcharacteristics C, that can be obtained
by inserting v into the child's characteristic C,. Similarly, for Forget nodes
x with child y and forgotten vertex v, ¢ includesall (C,, (Forget B,,v), C,)
wherethe Forget node combination procedurebuilds €, from C,; Join nodes
x with children y and z leadto transitions (C,, (Join, B,), C,, C.) if C, and
C', canbe mergedinto C,, taking into accoun the structure of the subgraph
B,.

Using the transition relation 5, we cande ne a tree-automatoncomputa-
tion onaword w € Ty, asa labeling of the nodesof the tree w = a(ty, ..., tq)
(a € 84, t1, ..., tg € Ts) with legaltransitions from 5. We call a sud a label-
ing a g-computation if the root getslabeledwith a transition leadingto state
q; the languageacceptedby the tree automaton is the set of treesw € Ty,
that have a g-computation for a ¢ in the set of initial states@;. Hence,by
setting Q; to the setof Q of all possiblecharacteristics, our speci ¢ tree au-
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tomaton A acceptsall tree decompsitions for which a characteristic at the
root node can be found. The fact that the transitions are descriked by the
relation 6 and not by a function introducesnondeterminisminto the com-
putation of tree automata. The \recipe" for constructing algorithms in the
next section can be seenas an instance of the well-known subsetconstruc-
tion, where states get replacedby setsof states and the transition between
setsof statescan be described by a function.

If there is any characteristic of a solution at the root of the tree decom-
position, we know that there is at least one solution to the problem on the
ertire graph. At this point, we have solved the decisionproblem, but because
we have passedonly characteristicsof partial solutionsinstead of the patrtial
solutions themselhes, an additional e®ortis neededto actually construct a
solution: During the rst phaseof the algorithm, we store with eat charac-
teristic the characteristicsthat were conbined to produceit. We selectan
arbitrary characteristic at the root node, and from the root to the leaves,we
selectat eat node the characteristic that led to the chosencharacteristic at
the root. Similar to the original computation of all characteristics, we com-
bine characteristicsfrom the leavesup to the root, but this time, we discard
all non-selectedcharacteristicsand retain for ead characteristic a complete
partial solution. At the root, we thus get one solution to the problem on
the whole graph. The running time remainslinear, if we can combine the
partial solutions of the children in constart time at ead tree node. This is
often possibletaking advantage of hints acquiredin the combination of the
correspnding characteristicsand using \implicit* represetations of partial
solutionsthat can be mergedand extendedin constart time, and corverted
to full solutionsin time linear in the sizeof the full solution.

2.3 A Recipe

The previous sectiondescribed the intuition behind the notions of the char-
acteristic of a partial solution and of the full set of characteristics. We now
construct a \recipe" for tting problemsinto the tree-automatonframework
for exciently solving graph problemson graphsof boundedtreewidth. The
ingredierts to solving decisionproblemsin linear time are

(1) the de nition of characteristicsof partial solutions,
(2) the proof that there is only a constart number of characteristics,

(3) four constart-time algorithms, onefor ead of Start, Introduce, Forget,
and Join nodes,that take asinput

e atree node x of the algorithm's type,
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e the bag B, and introduced or forgotten vertices,
e for eat child y; of =, one characteristic C,,,

and return a set of characteristicsat z,

(4) proofsthat for every characteristic C,, producedby a combination pro-
cedurefrom C,,,...,C,,, a partial solution S, with characteristic C,
exists at = whoserestrictions S,, to G,, have characteristic C,, (this
is the correctnessproperty) and that for every partial solution S, the
combination procedurefor  nds the characteristic C, of S, provided
that the conbination procedureis called for all conbinations of char-
acteristics from the full setsat children y; (this is the completeness

property).

Theorem 15. If the prerequisites(1){(4) are met for somedecisionproblem
P, there is a linear-time decisionalgorithm for P.

Proof. Moving from the leavesup to the root, we compute characteristicsby
invoking the algorithms of ingrediert (3) for eat combination of children's
characteristics and taking the union of the resulting sets of characteristics.
By induction on the tree and by applying (4), these sets are full sets of
characteristics. If the full setC, at the root is non-empty, we accept,otherwise
we reject. The running time is O(1) at eat node, becausehe algorithms at
eat node are invoked only a constart number of times. 2

Proceedingfrom decisionproblemsto computing solutions, we needto supply
an additional ingrediert:

(5) four polynomial time algorithms, onefor Start, Introduce, Forget, and
Join nodes, that take asinput

e atree node z of the algorithm's type,

¢ the bag B, and introducedor forgotten vertices,

e a characteristic C, from the full setat z,

o for ead child y; of z, apair (C,,, S,,) of the characteristicC,, at y;

that led to C, and a partial solution S,, at y; with characteristic
Cyﬂ

and produceasoutput a partial solution S, at x that hascharacteristic
C, and whoserestriction to G, is S,,.

Theorem 16. If the conditions (1){(5) are met for someproblem P, there
is a polynomial-time algorithm computing a solution to P. If solving the
decisionproblem using Theorem 15 takestime O(n), and the algorithms of
ingrediert (5) have constarnt running time, the solution can be computedin
time O(n).
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Proof. Computea characteristic of the root node usingthe algorithm outlined
in the proof of Theorem15, but storewith ead new characteristic pointersto
the correspnding characteristicsof the children. Then apply the algorithms
of ingrediert (5) in a bottom-up passon the tree. 2

2.4 The Implementation

We successfullyimplemerted the abstract tree-automaton technique as a
genericC++ \template class" [SE9(Q. For a concreteproblem, the ingredi-
erts of the recipe from Section2.3are substituted into this template: Generic
(compile-time) parameterssupply the classof characteristics(ingrediert (1)),
the four combination algorithms (ingrediert (3)) and optionally four algo-
rithms to construct solutions from characteristics (ingrediert (5)). By this
means,we obtained algorithms for deciding INDEPENDENTSET, COLORING,
and PaATHwiDTH aswell asfor solving the correspnding construction prob-
lems. The PATHwIDTH problem and computing path decompositionswill be
treated in detail in the next chapter.

An input instance consistsof a graph G = (V, F), a tree decompsition
(T = (X, F),{B.}.2r) of G and parametersspeci c to the problem such as
the number of colorsfor COLORING; we assumethat the tree decompsition
has size O(n) and let £ denoteits width. Processingthe input starts with
the corversion of the supplied tree decomposition into a rooted tree decom-
position with Start, Introduce, Forget, and Join nodes. A root of 7" is chosen
arbitrarily. Then a recursiwe algorithm cornverts subtreesof the input tree
decompsition into the desiredform, creating for leaves a Start node and
a chain of Introduce nodes, generatinga chain of Join nodesfor ead node
with at leasttwo children, and replacingnodeswith a single child by chains
of Forget and Introduce nodes. A rough estimate of the number of resulting
nodescan be obtained as follows: There are as many Start nodesas leaves;
eat node of the original tree decomposition causesat most k£ + 1 Introduce
nodesto be created;ewery vertex of the graph is forgotten exactly once;and
there are at most twice as many Join nodes as there were nodes of degree
greater than two. Thereforethe converted tree decompsition still has size
O(n); Kloks [Klo94] shows that with a more involved algorithm, the number
of Start, Introduce, Forget, and Join nodescan be limited to at most 4n.

In the further discussion,x € X denotesa tree node with children
Y, --.,Y4, 1.€., d = 0 for Start nodes,d = 1 for Introduce and Forget nodes,
and d = 2 for Join nodes. The straightforward way of nding a character-
istic at the root of 7" would be to compute in a bottom-up passon 7' the
full setsof characteristics at every node; at node x, we would repeatedly
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invoke the combination procedure appropriate for = with all conbinations
(Cyss ..., Cy,) of one characteristic from the full set of ead child y; of x.
This approad is unsatisfactory becausewe are only interestedin a single
characteristic at the root and not in all of them. Moreover, we would like to
compute at ead node only as many characteristicsas necessaryto nd the
characteristic at the root. For this reason,the computation of characteris-
tics is pipelined: every node = remenbers the state of the computation of
the full set of characteristicsC, at x and whenthe parernt node asksfor the
next characteristic from C,, it resumesthe computation of the full set until
a new C,, is found, then sendsC, to the parert, and suspendsthe execution
until the parert issuesthe next request(seeSection 6.3 for a discussionof
pipelining in C++). Join nodesneedto conbine all pairs of characteristics
from their two children, so,in general,they ask morethan oncefor the same
characteristic. Therefore, we store at eat node the characteristics already
computedin a\cache" to avoid computing them again (otherwise, we would
violate the linear time bound). At somepoint, the problem-speci ¢ part of
the algorithm may signalizethat at node = no further characteristicscan be
found|then the cade at = must cortain the full set of characteristicsC,.
Sinceat z, all requestsfor characteristicscannow be satis ed from the cade,
the cadhesat nodesin the subtreeT, can and will be discarded.

Once a characteristic at the root has beenfound, the algorithm erters
a secondstage, in which a solution is computed bottom-up by functions
constructing a partial solution at any node x. The functions of ingrediert
(5) take as parametersa characteristic C, at node x and for ead of its
children y, ..., yq pairs (Cy,, S,,) wherethe S,, are partial solutions at y;
with characteristic C,, and where the C,, can be conbined to C,. Before
we can call these solution-computing procedures,we have to determine at
ead node z a characteristic C, so that characteristics of siblings can be
combined to the characteristic of their parert. During the rst stageof the
algorithm, we discard the characteristicscaded at = as soon as the full set
of characteristics at the parert of = has beenfound. Therefore we have
to recomputediscardedcharacteristicsby enumerating the characteristics of
the children y,,...,y, of z until a conbination of (C,,,...,C,,) is found
that givesriseto C,. In recomputing, we usethe cathesagain; for situations
wherememory is scarce,we optionally °ush cadesin the secondstageasin
the rst stage. However, °ushing cacesin the secondstagemeanssactri cing
the linear running time|it may happen that the characteristicsat the leaf
nodeshave to be recomputedO(h) = O(n) times, whereh is the height of T
(seealsoFigure 24 in Chapter 3).

Additional features of our implemertation of the tree-automaton tech-
nique are the elimination of redundart characteristics basedon a problem-
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speci ¢ partial order on the characteristics (assumingthat \greater" charac-
teristics are subsumedby \smaller" characteristics,asin the INDEPENDENT-
SET problem, where characteristics (s,., I%) were discardedin favor of char-
acteristics (s, I%) with s, > s,) and the gathering of statistics suc as the
number of characteristics computed and the time spernt in the stagesof the
algorithm. Translating applicationsof the abstract tree-automatontechnique
into separatesoftware modulesfor the tree automaton and problem-sgeci ¢
parts had the advantagesthat

e complex algorithms could be decompsed into small functions with
clearly de ned and simple requiremerts,

e all problems-sgci ¢ implemertations equally bene ted from features
and enhancemets of the tree-automaton module,

e for new problems,the tree automaton did not needto be programmed
from scratch, and

e independert testing was possible.

The performanceof our implemertation, including the e®ectof optimiza-
tions, will be discussedat the end of the next chapter in conjunction with

the computation of path decompositions; information on installing our tree-
decompsition software with the tree-automaton template is given in Sec-
tion A.2.
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Chapter3

FindingPath Decompsitions

This chapter is dewted to a particular application of the framework dewel-
opedin the previouschapter: givena graph GG, a bounded-width tree decom-
position of G, and an integer ¢, we compute a path decomposition of G of
width 7, if oneexists. Path decompositionsare special casef tree decomm-
sitions wherethe underlying tree is actually a path; the minimum-width path
decommsition de nesthe pathwidth of a graph. Every path decompsition
is also a tree decompsition, but, in general,a minimum-width tree decom-
position will not be a path decomposition. This impliesthat the treewidth of
a graph is boundedfrom below by its pathwidth; just like TREEWIDTH, the
ParawiDTH problem of decidingwhether a graph hasa path decomposition
of at most a given width is NP-complete[ACP87].

3.1 Applications of Path Decompositions

We are interestedin computing path decompositions for two reasons:First,
computing path decompsitions turns out to be an important problem in
VLSI design[MAh90]and, second the algorithm for computing path decom-
positions can be extendedto compute tree decompositions. The latter may
seemparadaical becausdhe algorithms already get a tree decompsition as
part of the input, but an investigation of the enhancedalgorithm in Chap-
ter 4 will shav that this algorithm can corvert tree decompsitions of any
width into atree decompsition of width ¢, provided G hastreewidth at most
(. Both the path-decompsition and the tree-decompmsition variant of the
algorithm were deweloped by Bodlaenderand Kloks [BK96].

Gate arrays are a designstyle for integrated circuits where the silicon
wafershave beenpre-processedo a certain fabrication step, and \p ersonal-
ization" to a concreteapplication usually amourts to adding a nal single
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Figure 3: A gate matrix layout (basedon [Bod93)).

layer of metal [WE85, MAh9(. The genericwaferis madeup of rows (arrays)
of gatesseparatedby routing channels,which obey strict directional cortrol
over routing: As depicted in Figure 3, ead channel consistsof two layers,
one for horizortal routing, the other for vertical routing. Through vertical
wires, every gate can connectto any of the horizontal tracks; the number of
tracks determinesthe distance betweenrows of gates, therefore one would
like to minimize their number in order to t more rows on the chip. Nets
are hyperedgesconnecting se\eral gates; given a number of gatesassigned
to a particular row and nets, our task is to arrange the gatesin that row
('nd apermutation of the gates)and assignnetsto tracks sud that netson
the sametrack do not overlap and the number of tracks is minimizedjw e
disregardthe possibility of a net changing tracks. For n nets and m gates,
the input canbe encadedin ann x m booleanmatrix M = (m;)1. i n1. j- m
sudh that m,; = 1 if and only if net ¢ is connectedto gate j; M is called
the gate matrix, hencethe problem name GATEMATRIXLAYOUT. Seethe
left-hand side of Figure 4 for an example.

Solving the GATEMATRIXLAYOUT problem is equivalert to computing
a minimum-width path decompsition (this result is due to Fellows and
Langston [FL89]): We construct a graph G by creating a vertex v; for eah
net: and by linking v; and v;; by an edgewhene\er there is a gate j connected
to both net i and net i° (i.e., m;; = 1= m;;, seeFigure 4, right-hand side).
It follows that the verticesof nets connectedto the samegate form a clique.
A path decompsition of GG translatesinto a gate-matrix layout: go through
the bags of the path decomposition from the left to the right and at eat
bag,

e if v; occursfor the rst time, assignnet i to the lowestcurrertly unused
track sothat it starts at the current position and endsat the last gate
to which it is connected,
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Figure 4: The input gate matrix for the example of Figure 3 and the
correspnding graph. Every column of the matrix represeis a gate, ev-
ery row a net. m;; = 1 meansthat gate j must be connectedto net
7; e.g., net 1 links gates 1, 2, 6 and 7, and gate 2 is connected to
nets 1 and 4. The path decompsition formed by a path of the bags
{1},{1,4},{1,4,2},{1,5,2},{1,5,3},{1, 3} corresmpnds to the solution of
Figure 3.

o if gatej is not yet placedand the current bagconains all netsto which
j is connected,append ;j to the list of placedgates.

By Lemma 11, all nets of ;7 occur in somebag, so all gates get placed,;
the number of tracks usedequalsthe size of the largest bag. On the other
hand, an arbitrary G givesriseto an instanceof GATEMATRIXLAYOUT: For
ewvery vertex v, we createa net i,, and add for every edge(u, v) a gate j,,,
connectedto the netsi, and i,. From a layout of this instance, we produce
a path decompsition by creating for ead gate ; a bag that contains the
vertices v of nets ¢, above gate j; the width of the path decomposition is
strictly smallerthan the number of tracks used.

The PATHWIDTH problemis alsocloselyrelatedto BANDWIDTH and other
problemsmeasuringthe \width" of total vertex orderings. For a graph G =
(V, E), the bandwidth of atotal orderingonthe verticesf : V «— {1,...,|V|}
is de ned asthe maximum distance|f(u) — f(v)| betweentwo adjacer ver-
tices v and v, and the bandwidth of the graph is the minimum bandwidth
of all vertex orderings. We shaw that the bandwidth is an upper bound on
the pathwidth of a graph; further relations are listed in [Bod96b]. Given a
graph G = (V, F) of bandwidth £ and an ordering f, we construct a path
decompsition of G by de ning bags By, := {v: 0 < f(v) — f(u) < k}
and linking By, and By, by an edgeif |f(u) — f(v)| = 1. If the ordering
has bandwidth k, the bagshave sizeat most k£ + 1, every edge(u,v) € E
is covered by Biint r(u),f(v)g @nd €ad vertex u occursin the cortiguous se-
quenceof bags Braxfo, f(u)i kgs - - - » Br): hencethe bagslinkedin this manner
constitute a path decompsition of G.
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3.2 Interfacing to the Tree-Automaton Technique

The remainder of this chapter is dewted to the construction and analysis
of the path-decompsition computation algorithm by Bodlaenderand Kloks
and our implemertation of it. The aim is to \prepare" a linear-time al-
gorithm accordingto the recipe of Chapter 2, therefore we needto specify
constan-size characteristics and constart-time combination algorithms|in
other words, the number of characteristicsand the time bound of the com-
bination algorithms may depend arbitrarily on the width £ of the input tree
decompsition and the desiredpathwidth ¢ but not at all on the number of
vertices of the input graph GG. Characteristicsare to represemn partial solu-
tions, which are path decompsitions of width at most ¢ in somesubgraph
G, of GG; aswe saw, characteristicsneedto carry the information necessary
to build from characteristicsof siblings the characteristicsof their parert.
Givena graph G = (V, E), a tree decompsition (T = (X, F),{B.}.2x)
of G and a requestedpathwidth ¢, we plan to provide, for computing a path
decompmsition of width at most/ (or determiningthat G haspathwidth > /),

the de nition of a characteristic of a path decomposition, sud that the num-
ber of characteristicsis independen of n = |V,

four combination algorithms with a time bound independert of n, which at
the four di®eren typesof tree nodesz € X compute characteristicsat
x from characteristicsof the children of x, and

four solution-computing algorithms that expand characteristics to path de-
compositions.

We let &k denotethe width of the tree decompsition, and assumethat the
tree decompsition hasonly Start, Introduce, Forget, and Join nodes. Partial
solutions S, at tree nodesx are path decompsitions of width at most ¢ of
the subgraph G,. To distinguish these path decompsitions from the tree
decompsition given with the input, we mark componerts of the former by
a hat (*); furthermore, instead of writing S, = (P = (X, #),{B;},, ;) for
a partial solution at tree node =, we denote sud a path decomposition by
a sequenceS, = (B;)1.; ., with the degeneratetree P = (X, ) given
implicitly by nodesX = {1,...,m} and edgesf' = {(i,i+ 1): 1< i < m}.
A sequenchm. i m IS apath decompsition of G,, if and only if eat vertex
v € (G, occurs preciselyin a cortiguous subsequencq&)ﬁrst(v). i last(v) @nd
eat edgeof GG, is covered by somebag (i.e., for ead edgethere is a bag
cortaining both endpoints).

Given a partial solution S, at tree node x, how do we derive a suitable
characteristic C,? Using S, = <Bi>1. .. m itself as characteristic is ruled out
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by the fact that S, grows with the number of vertices of GG, and hence
dependssubstartially on n. But let us postponethis issuefor a momert and
considerhow the algorithm would work with C, = S,. Then it will be easier
to identify the relevant information about S, which needsto be stored in
Cy.

A Start node = with vertex v would produce all possiblepath decomp-
sitions of the graph G, = ({v},0), e.g.,

{oh), @.Avh), 0.{v},0), .0 {v},{v},0), ...

and so on. For the momert, we ignore that there is an in nite number
of sudh path decompsitions. An Introduce node = with child y and new
vertex v takesead path decompsition S, of GG, (producedat node y) and
createscandidates S, for path decompsitions of GG, by inserting v into all
cortiguous subsequencesf bagsin copiesof S,. If a candidate S, consistsof
bagswith at most/+ 1 elemens, andif in S, all edgedetweenv and vertices
in B, are covered,then S, := S, is a path decompsition of G, of width at
most /¢ and is insertedinto the output set. A Forget node passe®n its child's
path decompsitionsunchanged(note that we must not remove the forgotten
vertex); a little more work is neededfor Join nodesx with children y and z:
We mergeonly path decompsitions S, and S, whosepaths are of the same
length and ched whether the pairwise union is a path decompsition of G,
of width at mast 7. If there is a path decompsition of width at most ¢ of
the ertire graph, it is found in principle using the given four combination
procedures.

We can limit the number of partial solutionsto a nite value by only
generatingpartial solutions.S, in which adjacert bagsdi®er. Start nodesthen
produce ({v}), (0, {v}), ({v},0) and (0, {v}, ?); Introduce nodes optionally
duplicate the rst and last bagsin which the new vertex v is to be put; and,
as before, Forget nodes do nothing. At Join nodes, bagsin S, and S, are
repeatedin all possibleways to bring S, and S, to the samelength. After
merging the expandedbag sequencedag by bag, we eliminate repetitions
of consecutie bags. Sincewe aim for a nite number of characteristicsthat
is independent of n, we assumein the following that in a partial solution
S, = (B;); no bagis repeated.

How do we achieve an equivalert computation with constart-size charac-
teristics? Looking for somekind of \compression", we recall the interference
property of tree decompsitions (Lemma 14): If, at two nodesy and z, par-
tial solutions S, and S. share vertices, the shared vertices are in the bag
B, of the lowest commonancestorx of y and z. Thus, at z, only vertices
in B, determinethe compatibility of partial solutions at children of x, and
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Figure 5: The reduction operation. The bags 5, = {1,3,4}, B, = {1,2,4},
B; = {2,4,5}, B, = {2,5,6} of a path decompsition of G, are projected to
B, = {1}, B, = {1,2}, B; = {2} (B; and B, both map to Bs).

the sizeof B, is boundedby k£ + 1. Consequetly, to form one part of the
characteristic C, of S, = (Bi)l. . m» We eliminate from S, all verticesnot in
B,, getting (BZ- N B.)1. i. m,» and from this sequenceve discard repeatedsets,
arriving at (B8, NB.)1. j. o =2 (Bj)1. j. v (S€Figure 5). Wecall (B;)1. ;.
a reduced bag sequence. Thanks to the removal of equal cortiguous sets, the
length of sud sequencess boundedby 2k + 3: for £ = 0 the boundis 3, and
extending a reducedsequencedy one vertex, we can duplicate at most two
bags,soincremerting £ meansincreasingthe length bound by 2. Each of up
to k+ 1 verticesoccursin somebag for the .rst time, and in someother bag

for the last time; hencethere are at most I; s < i?+2 ways of placing £+ 1
verticesinto 7 bags,and by summingover i, it follows that there are at most
(2k + 3)?+3 sequencegB;);, a number independert of n. Also note that
(B;), is a path decomsition of B,|this will be an important invariant of
the nal characteristic.

Can reducedsequence$B;); themselessene as characteristicsC,? Not
quite. Going from S, = (B,); to (B;);, we losetoo much information about
S.. Notably, we needto supplemen the reducedsequence$Bj>j with infor-
mation about how full the bagswere before (5;); wasreducedto (B;);. We
arguethat two simplevariants of recording\bag utilization" with the reduced
bag sequenceslo not meet the requiremeris and shav how a sophisticated
approad achievesthe desiredresult. Storing with ead reducedbag Bj the
sizeof the largestoriginal bag B; that wasreducedto Bj leadsto incomplete
conbination algorithms (seeSections2.2 and 2.3 for a discussionof correct-
nessand completeness).Supposeat node x, the path decompsition S, of G,
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Figure 6. Example graph and tree decompsition

is characterizedby a sequence(B;, u;))1. ;. .~ Whereu, € N recordsthe size
of the largest B; projected to Bj. The ernvisagedcombination procedurefor
Join nodesx with children y and = considersonly characteristicsof children

Cy= ((Byjiuy)1 jom, and  C.= ((Boj =) jo m.

with equal bag sequencesi.e., m, = m, and B,; = B., for 1 < j < m,,.
After setting m, = m,, B,; := B,,, and u,,; = u,,; + u.; — |B], it
discardsall results C,, = <(Bmﬁj,ux,j)>1. jom, With any w,; > ¢+ 1. This
procedureis correct becausewe can merge partial solutions S, at node y
with characteristic C;, and S, at node z with characteristic C', to a path
decompsition S, of G, with characteristic C,. Unfortunately, there are
partial solutions S, and S, that can be conbined to a solution S, but for
which the combination proceduredoes not yield a characteristic. Take for
examplethe graph with the tree decomposition of width 2 shavn in Figure 6.
Characteristics of the left \Intro ¢" node needto cover the clique {a,b, c}
(Lemma 11), sothey take the form

(...,({a,b,c},3),...)

wherethe other reducedbagsare proper subsetsof {a, b, c}. Thereforeat the
left Forgetnode, ead characteristicwill cortain a pair ({b, ¢}, 3), aswill every
characteristic at the Forget node on the right. Merging any characteristics
of the two Forget nodes at the Join node yields a pair ({b,c},3+ 3 — 2),

and the result is discarded, even though the underlying graph clearly has
pathwidth 2.
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The shortcomingof storing the maximum utilization with ead bagin the
reducedsequencas causedby the fact that G[{a, b, c}] haspath decompmsi-
tions whoserestriction t0 Broget o« = {b, ¢} cortains not only bags{b, c} with
utilization 3 but also somewith utilization less than 3, namely 2. Those
bagsB; = {b, ¢} do have room to accommalate node d, but our approad of
only remenbering the maximum utilization doesnot take this into accoun.
Instead, we might resort to the other extreme and store with eah B; the
utilization sequence of bag sizes(|B;|):,. .. ;, for the bags B; with restriction
B;n B, = B;. While suzcient for shaving correctnessand completeness
of suitable combination procedures,the length of utilization sequencesle-
pendson the sizeof the subgraphG, and henceon n. However, let us rst
prove that sud \preliminary" characteristics of non-constan size are ad-
equate with regard to correctnessand completeness. Later we will nd a
compromisebetweensizeand information corient and amendthe following
proofs for the nal form of the characteristic of a path decomposition.

3.3 Preliminary Characteristics

The \preliminary" characteristic of a path decompsition S, = (Bi)l. i m Of
a subgraph G, is computed as follows: We assumethat consecutiwe bagsin
S, di®erby exactly onevertex, otherwisewe remove repeatedbagsand insert
new bagsbetweenbagsthat di®erin more than onevertex. We setu; to the
sizeof B, and restrict B; to the bag B, of tree node . Proceedingfrom the
left to the right, we remove repeated equal sets B, n B, and build from the
correspnding u; = |B;| a sequenceu; 1, u;, . . . , Ujn, ), Which is stored with
B; := B, n B,, giving a characteristic

Cx = <(Ej, <Uj717uj‘72, Ce ,uj,nj))h. jm

The stepsof deriving a preliminary characteristicareshavn in Figure 7, while
the operation of projecting a normalizedbagsequencéo B, and constructing
the utilization sequencess depicted schematically in Figure 8.

To put the preliminary characteristicsto work, we needto shav how to
conbine characteristicsat the four di®eren node typessothat for ead node
x and ead partial solution S, (a path decomposition of G, with width at
most /) the characteristic C, of S, is built; moreover, for any computed C,,
there must be at leastone S, with characteristic C,.

Start Nodes

A Start node z with vertex v haspath decompsitions ({v}), (0, {v}), ({v},0)
and (0, {v}, 0)[remem ber that we decidedto discard repeated bagsand to
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arbitrary path decompsition S, of G,

i

remove adjacert equalbags

adjacent bagsdi®er, number bounded

normalize

L

restrict to B, determine bag sizes

adjacent bagsdi®erin exactly one vertex

remove adjacen equalbags («- - -» build utilization sequence

)

sizeindependern of n ‘ length O(n)

preliminary characteristic C, of S,

Figure 7: Computation of \preliminary characteristic"

RERER
a4

1,32 4 2

Figure 8: Example of deriving a preliminary characteristic. Verticesin B,
are lled bladk, i.e., the characteristicis ((m,1,3,2),(me , 1), (0, 2)).
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Figure 9: Inserting A into a preliminary characteristic

compensatefor this restriction by adapting the combination procedures.The
correspnding set of preliminary characteristicsis

C. = {{({v}, 1)), ((0,0), ({v}, 1)), (({v},1),(0,0)), (¥,0),({v},1),(0,0)}.

Note that we have omitted the sequencebrackets (-) for the utilization se-
guencesto improve readability. There is a one-to-onecorrespndencebe-
tweenpartial solutionsand characteristics,which takescareof correctnesqa
solution for ead characteristic) and completenesga characteristic for eat
solution), henceC, is a full setof characteristicsat Start node z.

Intro duce Nodes

Introduce nodes = with child y and introduced vertex v take eat charac-
teristic C, producedat y and iterate through combinations of adding v to
a range of bagsin C, (seeFigure 9 for a depiction of this operation). The
“rst and last bagsinto which v is put are split into an inner copy with v and
an outer copy without v. Furthermore, the utilization sequencesvithin the
range are incremerted to re°ect the new vertex; the utilization sequenceof
ead boundary bagis split in all possibleways into two utilization sequences,
which go with the two copiesof the boundary bag. The sequenceslemen
at which the split is performedis included at the end of the rst sequence
and the beginning of the secondsequenceand the sequencen v's rangeis
incremerted. Eadh resulting C, must passtwo cheds in order not to be dis-
carded: All edgesbetweenwv and someother node of the subgraphG, must
be covered; otherwise, C, is not a valid path decompsition of B, and thus

38



cannotbe a characteristic of a path decompsition of G,. And secondly none
of the utilization valuesmay exceedhe upper limit of /+ 1. Correctnessand
completenesof this operation are proved by induction on the tree, taking
asinduction hypothesisthat correctnessand completenessold for the child:
For eat C,, there is a C, from which C, was constructed; by induction,
there exists a normalized S, with characteristic C,,. By the de nition of the
preliminary characteristic, there is a one-to-onecorrespndencebetweenuti-
lization valuesu; in C, and bagsin the path decompsition S,,. Therefore
repeating two reducedbagsin C, and adding v to a range of reducedbags
inducesan equivalert operation on S, yielding a sequenceof bagsthat we
call S,. In S,, all edgesof (G, are coveredand verticesoccur only in cortigu-
ousranges,either becauseof the correspnding property of S, or becauseof
the way v was added. Hence S, is a path decompsition of G,. Moreover,
S, obviously hascharacteristic C,., which completesthe proof of correctness:
For ead characteristic C, at z, there existsa path decomposition S, of G,.
To prove completenessywe must shawv that the characteristic of every par-
tial solution S, is computed, given every characteristic at y. The restriction
ofany S, to G,|formed by removing the newvertex v|is a partial solution
at y, which we call S,. By the induction hypothesis,we know that the char-
acteristic C,, of S, is computedat y. As outlined in Figure 10, we will shov

at © at y
i(/% restriction to G|, s, % given

haschr. | haschr. @ found by induction
‘HH\?}EH Corrbi‘natioq at 1 & HHHHH occurenceto be shavn

Figure 10: The approad taken by the completenesgroofs

that the combination procedureon input C, will producethe characteristic
C, of S,. Without lossof generality, we may assumethat in S,, consecutie
bagsdi®erin exactly onevertex. Remaoving v from the rst bagin which it
appears makes this bag equal to its predecessor.Likewise,the last bag in
which v appearscoincideswith its successowhenv is deleted. Thus S, has
repeated bagsat the beginning and at the end of the rangeinto which v is
insertedto get S,, but all other bagsstill di®erin exactly onevertex. In the
characteristic C,, of S, theserepeated bags get cortracted, but none else.
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The conmbination algorithm cheds for all rangesof reduced bags whether
inserting v will cover all edgesbetweenv and other verticesin B,, soit will
alsoconsideradding v to from the ‘rst cortracted to the last cortracted bag.
For this choice of rst and last bags, all edgeswill be covered becauses,
is a valid path decompsition. The combination algorithm then duplicates
the rst and last bag, thus undoing the cortraction, and inserts v into the
interior of the range. This givesthe characteristic C, of S, and we have
shavn the completenesf the Introduce node conbination algorithm.

Forget Nodes

The conbination algorithm for Forget nodes = with child y and forgotten
vertex v transforms characteristics C, into characteristics C, by removing
v from all bagsin C,, deleting repeated bags, and concatenatingtheir uti-
lization sequencesCorrectness:Given a characteristic C,, there existsa C,
from which C, was constructed. By induction, there is a partial solution .S,
on G, with characteristic C,. SinceG, = G, S, is alsoa partial solution of
G.; hencefor eah C,, there is a partial solution. As for completenesswe
follow againthe outline of Figure 10; any partial solution S, with character-
istic C, is alsoa partial solution at y, hencethe characteristic C, of S, = .S,
is computed at y. Performing the Forget node algorithm on C, yields a
characteristic C, of S,, and sincecharacteristicsare unique, C, = C,.

Join Nodes

Let = be a Join node with children y and z; remenber, B, = B, = B,
for Join nodes. Combination of characteristics C;, and C., at node y and z,
respectively, will only be attempted when their reducedbag sequenceso-
incide. By the interferenceproperty of tree decompsitions, vertices shared
by partial solutions S, and S, are in B,, therefore utilization values be-
yond the size of the reducedbag in C, and C, refer to different forgotten
vertices and thus must be added. Even when the reduced bag sequences
of C,, and C, are equal, the correspnding utilization sequencesn C, and
C, do not necessarilyhave the samelength. We can bring two utilization
sequencedo the samelength by repeating some of the utilization values.
This correspnds to repeating bagsin partial solutions, an operation that
maintains the path-decomposition property. Each way of expanding every
pair of utilization sequencesn C, = ((B;, (uy 1, -+ tyjn, )1 jo m, aNd
C., = (B, (uzjn, . .. JUzjm,)))1- - m. tO the samelength givesriseto a can-
didate C, of a characteristic at z: C, hasthe samereducedbag sequence
as C, and C, and its utilization sequencesire formed by summingthe ex-
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pandedsequencesf C, and C, elemen by elemen and subtracting the size
of the correspnding bag, which would otherwise be courted twice. Hence
we have
Cy = «Bﬁ <U;,j,1 + Uz,j,l - |Bj|a e >U;,j,nj + uz,j,nj - |Bj|>)>1 Jr my

wherethe sequence$u§,j,i)1. i n, derive from (u, ;i)1. ;. ,, Dy repeating el-
emerts, and the (u? ;)1 i n, from (u. ;)1 i . ;. If a candidate C, hasall
utilization valuesboundedby ¢+ 1, it is inserted into the output set and
discardedotherwise.

Let us considerthe correctnessof this algorithm: Given C,, there are
characteristicsC), at y and C, at z from which C, wasbuilt. Let S, and S, be
the correspnding partial solutions, which exist by the induction hypothesis.
We canmergeS, and S, by rst repeating bagsaccordingto the expansions
of the utilization sequencesand then computing the pairwise union. The
resulting S, is a path decompsition of G,.: ead edgeis covered, and eah
vertex only occursin a cortiguous range of bags. Its width is boundedby ¢
sincethe utilization sequencesccurately re°ect the bag sizesin S, and S..

To prove completenessye start from any partial solution S,, which can
berestricted to GG, and GG, giving partial solutions.S, and S,. By induction,
the characteristicsC,, of S, and C, of S, are computedat y and z; the Join-
node algorithm combines them, creating as output a set of characteristics
C = {C..}i21, amongwhich must be the characteristic C, of S,. Because
the restrictions of S,, S,, and S, to B, = B, = B, areidertical, C,, C,, and
C, have the samereducedbag sequencesso we only have to show that the
utilization sequence®f C, can be built by expandingand summing corre-
sponding sequence®f C, and C,. Expansionis neededwhen S, restricted
to G, or G, cortains repeated bags, which are removed in computing the
characteristics C, and C,. The expansionof the utilization sequenceshat
correspndsto restoring the deleted repeated bagsleadsto a C? that accu-
rately re°ects the bag sizesof S,, henceC, = C? € C.

This completesthe construction of combination proceduresfor computing
path decompositions of G of width at most ¢ using \preliminary" character-
istics. From the characteristic C,,; at the root and from the characteristic
that wasusedat ead other nodeto construct the characteristic of the paren,
we canderive a path decompsition S,,.; 0f G, = G by executingthe insert
and mergeoperations that were imitated by combining preliminary charac-
teristics. Indeed, computing preliminary characteristics C, instead of ertire
partial solutions.S,, ason page33, did not causemuch changeto the com-
bination algorithms becausethe relevant information for conbination|the
structure of the restriction of S, to G[B,] and the original bag sizes|w ere
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consened in the characteristic. As we sav earlier, size and number of re-
duced bag sequencesre independert of the number »n of verticesin G, in
cortrast to the utilization sequenceswhosetotal length equalsthe number
of bagsof the characterizedpath decomposition and is thereforelinear in n.

We already obsened that substituting the maximum utilization for eath
utilization sequencdalls short with regardto completenessSincewe require
that no characteristic beingcomputedat the root nodeimpliesthat the graph
has pathwidth greaterthan ¢, we have to nd a way to reducethe size of
the characteristics without sacri cing completeness.Any attempt of going
from one utilization valueto a xed-length sequence|say three values,one
for the rst elemen, the greatestelemen, and the last elemen of the actual
utilization sequencelis doomedas well: In the next section,we will give a
class7 of -(2 ) utilization sequencesnd show that to achieve correctness
and completenessthey must map to distinct compressedutilization repre-
serations. Howewer, with a xed number of valuesin the rangeO, ..., ¢+ 1,
we cannot represen 2° objects. After this result of our own, we resumethe
construction by Bodlaenderand Kloks and show that represeting arbitrary
utilization sequencedy elemens of 7 is suxcient and that the sizeof 7 is
in O(2%), that is, independert of the number of verticesn.

3.4 Compressing Utilization Sequences

In the following, &/ will denotethe classof nite sequence®f nonnegative
integers, which we call utilization sequencesl{, standsfor the U/-sequences
with elemens in the rangeO,...,/ + 1. We de ne a subset7 of utilization
sequence®nd its restriction 7, to U,: The de ning property of sequences
T € T is that betweenany two non-consecutie sequenceelemerts, there is
an elemen that is either greateror smallerthan both of them. For example,
(1,5,3,4) conformsto this condition, whereas(1,3,5,4) does not because
1 < 3 < 5. Let usderive a bound on the number of sud 7 € 7,. For integers
0<u; <wug <...<uy <+ 1, the sequenceu, us, us, us; 1, Us, Us; 2, - - -)
isin 7,. There are 22 — 1 ways to choosenon-empty subsets{u,...,u,}
from {0,...,/+ 1}, and eat choiceleadsto a di®eren sequencetherefore
|7;| = -(2 ¥). On the other hand, it canbe shovn that ewery 7,-sequencehat
starts with its minimum is of the above form, and every 7,-sequencestarting
with its maximum is of the form (u, uq, ug; 1, U2, us; 2,us,...). In every 7-
sequencegither the maximum or the minimum occursonly once;if we split
a sequenceat this hinge elemen sothat it endsup in both parts, we get a
right part, which is in oneof the forms above, and a left part, whosereverse
is in this form. Thus we have reducedcourting the number of 7,-sequences
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to courting subsetsof {0, ..., ¢+ 1}. A detailed calculation leadsto a precise
court of T, := 24° — 2 = £(2%).

To seewhy in compressingutilization sequencesf preliminary character-
istics, two sequencefrom 7 must never have the samecompressedmage,we
needto introducea little apparatus. A sequencex € I/ can be expandedby
repeating elemeits; expansionswill be denotedby an asterisk,e.g.,a possible
expansionof o = (1,3/225) is a” = (1,3,3,2,2,2,5/5). Remenber that
those numbers stand for bag sizes,and bagsin a path decompsition can
be repeatedwithout destroying the path decomposition; moreover, repeating
bagsand utilization valuesis necessaryn mergingpartial solutionsand char-
acteristics. We write o« < § when « and ( have the samelength and eadh
elemen a; of « is at most as great asthe correspnding elemen b; of 5. We
extend < to a partial order < on sequencesf di®eren length: a < 3 shall
hold if there exist expansionsa® and g% of the samelength with o® < g°.
Informally, o < 3 expresseshat merging operations that work with ( also
work with «. Equivalencewith respectto the conbination operationsis con-
veyed by the equivalencerelation <: We seta =< g if and only if o < 3 and
a = (. Actual mergingis re°ected in the addition operation; for expansions
of the samelength, o" + 3° is the pairwise sum of the sequencesand a @ 5 is
the set of the sumsof all expansionsof commonlength. One criterion of the
\qualit y" of a utilization sequencex is its maximum maxc, the value of its
greatestelemen. The maximum matters, for example,at Introduce nodes,
wherea new vertex is addedto a range of bagsand we must ensurethat the
maximal bag utilization doesnot exceed/+ 1. At Join nodes,the best t of
two sequencesvith respect to the maximum utilization value is measuredby

min max(a & £) := min{max(a" + 5% : a", 3 same-lengthexpansion$

The following two lemmashelp to establishthat xed-size utilization rep-
resenations cannot exist. We rst claim that sequencesr and /3 indistin-
guishable by min max(- & ~) are equivalert and then argue that distinct
T-sequencesare newer equivalert; Theorem 19 summarizesthe conclusion
that distinct 7-sequencesre distinguishable.

Lemma 17. Let o and ( be utilization sequences.If for all utilization se-
quencesy, min max(a @ ) = min max(s @ v), then a < S.

Lemma 18. For o,7 € 7, 0 < 7 implieso = 7.

Putting together the cortrap ositions of Lemma 18 and 17 yields

Theorem 19. For 0,7 € 7, if ¢ # 7, then there is a utilization sequence
v € U with minmax(c & v) Z minmax(r & ). 2
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Any compressedutilization sequencemust cortain information about the
maximum utilization of the represered utilization sequencessincethis in-
formation is necessaryto know whether at an Introduce node a vertex can
be inserted into the whole range of bagsthat have the sameprojection Bj.
Only utilization sequencewith the samemaximum can map to the same
compressedepresetation; otherwise,for correctnessthe greater of the val-
ueshad to determine the maximum stored in the represemation, defeating
completenessThe characteristic claimsthat lessverticescan be addedthan
for which actually is room. Therefore Theorem 19 meansthat ead elemen
of 7, must be projected to a di®eren represemation, bloating their number
to -(2 %), beyond the capacity of a "xed number of utilization values. Before
proceeding,we give proofs of the precedinglemmas.

Proof of 17. Let o = (a;);, A= maxa and~y = (A—a;);. Then min max(a®
v) = A. If minmax(3 @ v) < A, then 5 < «. Switching the role of « and 3
yields o <  and thereforea = £. 2

Proof of 18. We show that there are expansionscs® and 7% with % = 7°.
Undoing the repetition of values,wethengeto = 7. Let L := len(o)+ len(7).
Note that

(1) becauseof o < 7, we have ¢° < 7° for any expansionss® and 77,
(2) for expansionss® = (s7); and 7° = (¢7); with

len(c”) = len(r") > L,

there must be positions where elemerits have beenrepeatedboth in o
and 7%, i.e., thereis anindex i with s; = s;; ; and ¢; = ¢;; 1.

We construct inequalities of expansionss;, 7,

0171 <0< <...<0; <7
invoking (1) repeatedlyand expandingearlier o;, 7; to the length of the latest
pair. By (2) we canassumethat all o;, 7; have length L. Eventually, equality
must hold becausehere is only a nite number of expansionsof ¢ and = of
length L. 2

We now move alongto prove that represeiing utilization sequencesvith
amaximum of at most /+ 1 by 7,-sequencegields a linear-time algorithm for
path decompsition. To do so, we introduce the projection 7 : &/ — 7, use
it to de ne the nal characteristics, adjust the conbination algorithms and
extend the correctnessand completenesgproofs. We have already seenthat
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Figure 11: Two utilization sequenceand their 7-projection 7(-) (bold). Note
that the rangesto be deletedare not uniquely determined.

a = (3 re°ects oneaspect of similarity betweenutilization sequences: and (3,
namely, the behavior under min max tests. We will shav that o < 3 implies
that we caninterchange« and  in any characteristic without sacri cing the
correctnessor completenesf the conbination algorithms. Hencewe can
safely replace utilization sequencesy by small represematives 7(«) of the
equivalenceclass[a]s . It is a natural choiceto chooser(«) from 7, since
those sequencesiave been shavn to be mutually inequivalert. Moreover,
we will seethat for eadh o with maxa < ¢+ 1, thereis a 7(«) € 7, with
7(e) < «a. Thereforewe canuniquely represem any valid utilization sequence
using 7,.

For a = (a;);, () is de ned by repeatedly deleting o®endingrangesof
elemerns in « until the de nition of a 7-sequencas met: While there are
indicesi and j with ¢ < j sothat for all elemerts a, between: and j holds
min{a;,a;} < ay < max{a;,a;}, remove all elemetts between: and j (i.e.,
the a, with ¢ < k£ < j, seeFigure 11 for examples). Obviously, 7(«) € 7.
We can extend 7(a) to the length of a by repeating the greater boundary
of ead deletedrange, leadingto a (7(«))® with (7(a))® > «, so71(a) = a.
Similarly, we can construct a lower bound (7(«))« with (7(a))= < «, hence
7(a) < a and 7(a) =< «a. As a side e®ectof this relation, we get that 7(«)
is well-de ned: If a getsreducedby di®eren deletionsto 0 € 7 and 7 € 7,
theno < a < 7,soby Lemmal8,o = 7.
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arbitrary path decompsition S, of G,

i

remove adjacen equalbags

adjacen bagsdi®er, number bounded

normalize

L

restrict to B, determine bag sizes

adjacen bagsdi®erin exactly one vertex

remove adjacert equalbags = - -» build utilization sequence

U

length O(n)

compressusing 7(+)

sizeindependmv length independen of n

characteristic C, of S,

Figure 12: The nal characteristic

As a compressionoperation, 7(-) is the last ingrediert of the nal char-
acteristic. Figure 12 shows how 7(-) ts into the procedurefor computing
the unique characteristic of a partial solution S, in the subgraphG, of node
x; note that from now on, C, will denotea nal characteristic of a path
decompsition of subgraphG,.. C, = ((Bj,rj)>1. ;. m consistsof a sequence
of reducedbags B; and 7;-sequences; with the essetial information about
the sizesof the bags B; of S, = (B;),. ;. ,» that are reducedto B;. What
does C, tell us about S,? Every pair of consecutie utilization valuest;,,
tip41 IN Sequencer; correspnds to a cortiguous range of bags (B;),. i ¢
which have intersection Bj with B,. About the sizesof those <Bi>q. iy W
know the precisenumber of verticesin the rst and last bag: | 8,| = ¢;, and
|B,| = t;,+1. Furthermore, dueto 7; € 7, the sizesof the bagsbetweeng
and ¢° vary only betweenmin{t; ,,¢; .1} and max{t; ,, t; 41}

46



3.5 The Final Characteristic at Work

By completenesswe previously understood that for any partial solution S,
at a tree node z, the conbination algorithm will compute its characteristic
C,. To succeedn proving completenesswith nal characteristics, we need
to relax this requiremen sothat for any S,, C, doesnot needto be com-
puted, but there existsat leastsome\b etter" partial solution S? for which a
characteristic C° is computedat z. This is still sutcient to guarartee that
whene\er a solution existson the ertire graph, a characteristic of oneis really
found|indeed, it would sutce to prove that wheneer a partial solution at
x exists, any characteristic at = is computed at all. Earlier we argued that
for utilization sequencesy < 3 implies that « can be usedwherewer g ts;

building on this, we write C° < C, if C, and C? have the samereducedbag
sequencend if for ead reducedbag, the ass@iated compresseditilization

sequencesatisfy TJQ < 7;. In this case,C? subsumes’,, and our new notion
of completenessneansthat for the partial solution S, with characteristic
C,, someC? with C° < C, is computed; Figure 13 shows the impact on the
completenesgproofs for conmbination procedures.

at © at y
i//@w//j restriction to G, 5, % given
has chr. has chr. && found by induction
C, Cy HHHHH occurenceto be showvn
Y Y
i COITbI‘I‘Ia'[IO’I at z W%

Figure 13: The revisedapproad for completenesgroofs. Comparedto Fig-
ure 10, the characteristics of the solutions are replacedby \b etter" charac-
teristics. The diagram shows the casewhere z hasone child; for Join nodes,
there are accordingly two restricted solutions S, and .S..

With regardto the full setof characteristics,the consequencef the shift
is that full setsare no longerunique, though there still is a minimal full set.
Obsene that if a conbination procedureat somenode = producescharac-
teristics C2 and C%®with C%:= C?, we may in fact discard C%° In cortrast
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to the precedingsubsequehre nemerts of the characteristics, this is a prop-
erty of the ertire (full) set of characteristics at a tree node z. Whether
redundart characteristicsare eliminated at eat node or not doesnot a®ect
the desiredlinear running time, becausesven without elimination, the num-
ber of characteristicsis independert of n. Howewer, redundancyin the full

set will be addressedin detail when we discussthe implemertation of the
path-decompsition algorithm.

In the following, wewill iterate onelast time over the four tree-nodetypes,
giving conbination algorithms and proving correctnessand completeness.
From time to time, it might be useful to skip aheadto Figures 18 and 20
on pages61 and 63 to seehow the combination algorithms work on concrete
characteristics.

Start and Intro duce Nodes

Of the four node types, only Start nodes behave exactly as before: They
producethe four characteristics

(({v}, 1), ((0,0),({v},1)), (({v},1),(0,0)) and ((0,0), ({v}, 1), (D, 0))

whose utilization sequencesare already 7 -sequences. No further work is
neededto show correctnessand completenessNote that we can do without
the rst three characteristics,becausesvery path decompsition building on
them can be extendedto contain empty bagsin front or in the bad.

As for Introduce nodesx with child y, our approad is exactly as before:
For ewery input characteristic C, = (B}, 7;))1. j. mr»

o we determineall possibleranges(B;),. ;. , into which the new vertex
v can be put sothat all edgesbetweenv and other verticesin B, are
covered,

e split the boundary sequences, = t;,...,t, and r, = 19,... ,tg/ at all
positions 7, i° into

Tqleft = tl, c. ,ti Tq,right = ti, c. ,tp

— 40 0 — 40 0
Ty left — tl? R 7ti’ Tq right — ti’? e ,tp/

e andincremert the elemeits of the sequenceassaiated with bagsinside
the rangeof v.
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Figure 14: Example of deriving a partial solution at an Introducenode. The
chosenrange for the new vertex A starts at the secondbag of C, and ends
at the third; at the secondbag, the utilization sequencas split at 4, while
at the third, the split is performedat 1.

The stepsleadto se\eral

Cy = <(B177-1)7-"7(qu 1, Tai 1)

(Bq? Tq,left)a (Bq U {U}7 Tq,right + 1), beginning,
(Byo1 U{v}, 71+ 1),...,(Byi 1 U{v}, 75 1 + 1), interior,
(By U {v}, 7 + 1), (By. 7y sigh) end of range

(Bq'+177—q’+1)7 B 7( m’7Tm’) >

and again we discard any C, where the maximum of any 7; exceeds/ + 1.
Splitting as well as adding constarts to 7 -sequencegjives 7 -sequencesso
the proceduremaps nal characteristicsto nal characteristics. Figure 14
showvs an example of how we can reconstruct a partial solution S, from a
characteristic C,: We assumethat at tree node y, we have a partial solu-
tion S, for C, (which is the characteristic from which C, was computed).
We locate in S, the two bagsthat correspnd to the splits performedto get
from C, to C,, duplicate thosebagsand insert v into the range of bagsthat
correspnd to the incremerted utilization values. This yields a path decom-
position S, of GG,; it has width at most ¢, which completesthe induction
argumert for correctness.

Now we start from somepartial solution S, at x and prove that the com-
bination algorithm computesa characteristic C? that subsumeshe charac-
teristic C, of S,. Weassumethat in S,,, consecutie bagsdi®erin exactly one
vertex. Let S, bethe restriction of S, to G,;; by the induction hypothesis,we
know that at tree node y, either the characteristic C,, of S, or someC?Y with
Cg < C, is computed. For preliminary characteristics, we had a one-to-one
corresppndencebetweenbagsand utilization values,sothat inserting v into
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insert v

(32,3, 4,4,5) (3.2,3,4), (5,5,6)
align ¥ ¥
(3,2,3.4,4,5) e tSLY e (3.2),(3.4,5,5,6)
T(')% T(')% %T(‘)
(3, 2,5) USANS (3,2),  (3,6)

Figure 15: Moving misalignedinsertion limits. The gure shows utilization
sequencesf a solution andthe correspnding 7 -sequenc®f its characteristic.
Note that the sequenceelemen at the split position is repeated, and that
the 7-sequencdrom C, wassplit into two 7-sequence# C,.

a partial solution had a courterpart in adding it to a characteristic and vice
versa. For the nal characteristic, we have to specify what happensif the
utilization value of a boundary bag of the rangeof v in S is eliminatedin C,:
We changein S, the range of v by moving in .S, any \misaligned" insertion
limit to the bagthat correspndsto the next lower value in the compressed
utilization sequencgFigure 15). This resultsin splits where on both sides,
the utilization sequencds not greater than the correspnding sequenceat
the old split position. Inserting v into the aligned rangeyields a partial so-
lution S,. For its characteristic C,, we have C, < C, and on input C,, the
combination algorithm does nd C, (Figure 16). If C, is producedat tree
node y, we are done; in general, however, merely a characteristic Cg with
Cg < C, is computedat y. Since(Jg < C,, we can expandthe compressed
utilization sequencesn C% = ((B;,7))1. ;. w and C, = ((B;,0)))1. . w SO
that for all j, we have 77 < o7. Adding v to C, inducesa way of adding v
to the expansionof C), and henceto the expansionof Cg; adding v to the
expansionof Cg inducesa way of adding v to C?, yielding a characteristic
C° with C° < C, < C,. This concludesthe completenessproof for the
Introduce-nale combination operation.

Forget Nodes

Forget nodes causelittle trouble. Let = be a Forget node with child y, and
let v be the forgotten vertex. The conbination operation for nal character-
istics is a straightforward extensionfrom the sameprocedurefor preliminary
characteristics: We transform every input C, to an output C,
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misalignedway align aligned way of
of addingv to S, . adding v to S,

way of adding
vto O,

| perform the inséertion of v |

has chr. has chr.

Co 7 Gy

Figure 16: Outline of shawving how for S, with characteristic C,, a C, with
C, = C, is found that gets computed from characteristic C,. S, is the
restriction of S, to G, and C,, is the characteristic of .S,,.

(1) by removing v from the reducedbag sequence,

(2) removing the two repeated bags,

(3) concatenatingthe correspnding compresseditilization sequences,
(4) and recompressinghem.

For C, = ((Bj,rj)>1. ;. m Wherew is in the bagsgq through ¢ C, takesthe
form

Cr = (Bl,ﬁ)7 . 'v(qu 2, Tgi 2)

(qu 1, T(7qi 10 7)) beginning,
By \ {0}, 7411), -, (Byi 1\ {v}, 7, 1), interior,
(By1,7(7q 0 7911)), end of v's range

( q+2 7_q’—l-2)7 ceey (Em’v Tont) >

where o stands for sequenceconcatenationand 7(-) is the projection to 7.
Note that dueto the normalization, B, ; = B, \ {v} and B, \ {v} = By
Now take any C, produced at = from C, at y. By induction, there is a
partial solution at y with characteristic C,,. SinceG, = G, this partial
solution is also a partial solution at = that has characteristic C,. Thus we
have showvn that the conbination is correct; completenesselieson the fact
that for arbitrary utilization sequencesy, 3, v, d we have

axpf andyxd== 1(aovy) X 7(60)9). (*)

51



Let S, bethe partial solution for which we want to shav that a C? at most as
great asthe characteristic C, of S, is computed. Again, the restriction S, to
G, isjust S, itself;, for S, = S, with characteristic C,, we know by induction
that a characteristic C) with C? < C, is found at y. \Forgetting" v from
both C? and C, yields someC? and the C, of S,; by (%), we have C? < C,,
which provesthe completenesof the Forget-nade conbination procedure.

Join Nodes

Finally, let us considerJoin nodes. As usual, we denotethe Join node by =
and its two children by y and z. With preliminary characteristics, we could
achieve completenes®ven though we only mergedcharacteristicsC,, and C,
with the samereducedbag sequence Sincepreliminary characteristicsdi®er
from nal characteristicsonly in the compressiorof the utilization sequences,
we maintain this restriction. Accordingly, we merely needto specify how
the 7-sequenceof C, and C, can be addedto re°ect the bag sizesof a
merged partial solution at x. The degreeof freedomwe have in merging
partial solutions .S, and S, is repeating bags;the correspnding repetition of
utilization sequencemapsutilization sequences to expansionsy”. Merging
two bagsof S, and S, is re°ected in the utilization by adding their sizes
without courting sharedverticestwice; mergingutilization sequences; and

3; assaiated with bag B]- in all possibleways yields the sequences
a

i ¢ .
o+ — 1B, : o, 3; same-lengthexpansions .

©
(0; ® ) — |B| =

The utilization sequencesn C, and C, are compressecand the utilization
sequencef ¢, must be from 7 as well. In general,the sum o & 7 of
T-sequencegortains elemerts that are not from 7, but applying the com-
pressionoperation 7(-) to all elemens of o @ 7 appearsto be a reasonable
approad to produce compressedsequencedor characteristicsat z. Thus,
from C, = ((Bj,0))1. j. w @and C. = ((B;, 7;))1. ;. mr» We let the algorithm
producethe characteristics

i ¢
Co = (B o)1 oo With pj €7 (0;®7) — |Bj| for 1< j<m® (#¢)

Of course,every conbination of choosingthe p; givesrise to one C,, and all
C, with maxp; > ¢+ 1 for any j are weededout. To corvince oursehesthat
for a C, thus computed,we can nd a matching partial solution S, we rely
oncemoreon the induction hypothesisthat partial solutionsS, on G, and S,
on G, with characteristicsC, and C, exist. We derive instructions from C,,
Cy, and C, on how to mergeS, and S.: Let «; and 3; be the uncompressed
utilization sequencef S, and S,, soo; = 7(a;) and 7; = 7(53;). Since
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;< and 7= B;, we can choose expansionso; and 7' that satisfy
o; > ayand i > f3;. In 0%, we canidentify ead valueln the sequencethh

a bag of S, of at most that size; the sameholds for 77 and S,. By (xx),

we know that P; orlglnatesfrom particular expanslonSUJr and 7’ of o; and
7 with p; = 7(0; + 7 — | B;|); we would like to translate theseexpansmn
stepsto expansionsof o; and 77, becauseoperations on the latter have a
courterpart in operations on bagsof S, and S,. Thereforewe compute 0}”’
asin Figure 17 by repeating the expandedrangesof o} just asthe elemers

CL LI el TATT

ol
o 00 000 0 0O O'jJr aoadd 000 aod dad dd

Figure 17: Imitating the sum expansionof o; with o7.

of o; wererepeatedin producing a By the samemeans,we expand 7} to

"* using the expansionfrom 7; to r asa model. Then we have

i o a ¢
Tojt T — |B]| = Pj

which meansthat if we can construct a partial solution at = with utilization
sequence&—}”r + r}’* — |Bj|, we have accomplishedour goal. Through the
sameexpansionghat takethe o7 to 0;-”“, we expandsS, to S, with utilization
sequences; satisfying o, < o;". By the samemeans,we obtain S with
utilization sequencesl;", where 3 < 77*. Merging S;f and S} bag by bag,
we get a path decompsition S, of G, with utilization sequences

v = of + 8 - |B)| < ort+ T~ |B1.

Clearly, we have nearly obtained the desiredresult|pro ving the existenceof
a partial solution S, with characteristic C,|but we haveto bealittle careful
in concludingthe argumert. Looking closely we seethat sofar we have only
proved that the sequencego’ ™ + 7, — |]}3j|)1. ;- m» dominate the utilization
sequencesf S,; howewer, someof the compresseditilization sequences(vy;)
might be strictly smaller than the correspnding p; of C,. To obtain an
S, with utilization sequences’" + 7" — |B;|, we enlargebagsin S, that
are too small by taking verticesfrom larger neighboring bags. The resulting
S, has characteristic C, becauset hasthe right reducedbag sequenceand
compresseditilization sequencep; = 7(o;" + 7,7 — | B))).

To recapitulate: we expand the compressedutilization sequence®f C,
and C to dominate the actual utilization sequencesf S, and S, and then
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expandthem further to re°ect the way the compresseditilization sequences
of C, wereconstructed. Theseexpansionstell us how the bagsof .S, and S,
have to be repeatedto producea S, with the given characteristic C,.

To prove the completenessf the Join-node conmbination procedure,we
start from a partial solution S, on GG, and show that the characteristic C, of
S, or a characteristic C° of somebetter partial solution S° is computed. By
the now familiar reasoning,we de ne S, and S, to be the restrictions of S,
to G, and G, and let C, and C. be the characteristicsof S, and S.; by the
induction hypothesis,the tree nodesy and z produce characteristicscg and
C? with C? < €, and C? < C.. Our task is to exhibit a C? that on the one
hand is amongthe output of combining CO and C?, and on the other hand
satis'es C0 < C,. Writing CJ = <(Bj,aj)>1 jom and CO= (B, 7)1 j. m
(Cyand (., and hence(]O and (JO must have the samereducedbag sequence),
we know that there are for ea j, expansionso’ and 7} sothat o7 < «;
and 77 < 3;, wherea; and 3; are the uncompresseditilization sequencesf
S, and S.. SinceS, and S, are both restrictions of S,, they have the same
number of bags;hencea; and j3; have the samelength, and we can add o7
and 7; elemen by elemen. De ning

' ¢
p=T ol — By

then will do the job; in other words, C? := ((Bj,pj)>1. ;o WIll turn out
to be a characteristic at = that doesget computedby our algorithm and for
which C° < C, holds. When we recall that in the conbination algorithm, the
candidatesfor the j-th conbination sequence&eomefrom 7((o; & 7;) — |Bj|),
we seeimmediately that our C? will be producedas an intermediate result.
It might get rejected if its maximum utilization exceeds/ + 1, so proving
C° < C, will not only establishthat C? is a sutcient surrogatefor C,, but
also senesto bound the maximum of C?. Looking at how S, results from
merging.S, and S, we seethat the j-th uncompressedjtlllzatlon sequencef
S, is a;+ B3;—|B;|, which is lower boundedby o2+ 7% —|B;|. The compression
step|pro jecting to 7 |preserv esthis mequahty I. e

of+ 77— B, <O‘J+5j_|Bj|
i ¢
== TO' +7' ]B| T()é]+ﬁj ]Bj|,

therefore p,; is smaller than the correspnding compressedutilization se-
quenceof S,, or C° < C,. As an aside,note that from the correctnessproof
above follows that the ominous\b etter" partial solution with characteristic
C9 really exists.

This concludesour description of the [BK96] algorithm for computing
path decompsitions of graphs of bounded treewidth. Before we re ne the
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analysisand discussour implemertation, a few remarkson the construction
arein order:

Solutions can be computed by recursingon the tree and conbining partial
solutions of the children by following the correctnessproofs. To every
characteristic at the root, a solution with this or a smallercharacteristic
can be found; nonethelessgrnumerating all path decompositions given
all characteristicsat the root requiresfurther e®ort.

No Solution will be found when, at any tree node, no characteristic is com-
puted. By the completenes®f the combination algorithms, this implies
that the graph doesnot have a path decompsition of width ¢.

Simplicity seemsto be lacking in the overall construction of the algorithm.
Howewer, we have argued in seeral placesthat the presen level of
complexity cannotbe avoidedin interfacingto the tree-automatontech-
nique: The reducedbag sequencas necessaryo determinethe ways a
partial solution can be extendedand by Theorem 19, further compres-
sion of the utilization sequencess impossible.

3.6 Analyzing the Algorithm

How many nal characteristics can there be? A characteristic consists of

a reducedbag sequenceand a 7,-sequencdor ead reducedbag; we know

exactly how many 7,-sequenceshere are, but our earlier approximation of

the number of reducedbag sequencegon page 34) was rather coarse. To

re ne it, we recall that consecutie bags 5; and Bm of a normalized path

decompsition S, = (Ei)l. ;. m Of the subgraph G, at tree node x di®er
in exactly one vertex. So do any reducedbags Bj and BjH, which result

from restricting the path decompsition to the bag B, of tree node x and

removing consecutie equalsets. We determineby induction the number r;, of

reducedbagsequences which exactly k di®eren verticesoccur andin which

adjacent bagsdi®erin exactly onevertex. For k = 0, there is one sequence,
which haslength 1 and consistsof the empty set, sor, = 1. For &£ > 0, we

construct all sequence$rom the sequen?esviéh k — 1 vertices. Thesehave

length s;; 1 = 2(k — 1)+ 3, andthereare ;' + s, 1 = %(sii 1+ Sk 1) ways

to choosethe subrangefor the k-th vertex, giving

TR

1
T = E(Sii1+skil)rki1: ﬁ4kl€l| k‘+§

55



wherej( -) is Euler's gammafunction, which generalizeshe factorial function
to arbitrary real argumeris. The number R, of reducedbag sequencesver
asetof k+ 1 xed verticesthen is

K1 M 1
R, = k-ijl .

1

T
i=0

Given a tree decomposition of width &£ and a desired pathwidth of /¢, the
number of di®eren characteristics can be up to (7, is the number of 7,-
sequences)

)(+1I1k+ 1“

Cre <
i

o Ty

i=0

X+1uk+1ﬂul . U. 7 u
= , — 4y e+ 2

o 1 NZs 2 3 3
)(+1llk+1ﬂ

(4

2@(i logi) | 2@ (i1®)

=0
— 2@(k log k+k@)

Due to the requiremen that consecutie bagsdi®erin exactly one vertex,
the di®erencebetweenthe last and the rst elemen of the 7,-sequence®f
consecutie reducedbagsis 1; to get an asymptotic lower bound, we obsene
that if we chooseewery secondZ,-sequencet will, the gapscanbe Tled with
simple 7,-sequenceshence

)(+1P—k+ lﬂ

1

ij > ST ngsi/Qe - 2@(k10gk+k@)‘

=0

Altogether, we obtain Cy, = 2°klsk+k®) At ewvery tree node, we have
to processat most C, many characteristics, which can be conbined using
table lookupsin time proportional to the size of characteristics, £( k£ + /),
S0, as promised, the ertire algorithm will run in time 2°(klegk+k®) . Q(p) =
O(2r°¥(::4) . ). For a few concretevaluesof & and ¢, Table 1 shovs how many
characteristicscan ariseat any tree node. The valuesshovn do not represemn
a looseupper bound|in atotally disconnectedgraph with an arbitrary tree
decompsition of width £, there really are C, , many characteristicsat every
tree nodewhenwetry to computea path decomposition of width ¢. Howewer,
to dismissthe algorithm basedon this evidenceas completely impractical is
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(=1 (=2 (=3 (=4
T1 =42 T2 = 170 T3 = 682 T4 = 2, 730
k=1 Ry= 9| 448-10° |295-10° | 1.90- 10 1.22- 10"
k=2 Ry= 112 2.81-1¢° | 7.52-10° | 1.94.10 4.99. 10"
k=3 Rzy= 2921| 330-10" | 3.58-10" | 3.71- 10 3.82-10%
k=4 R,= 126,966/ 6.24-10" | 2.73- 10" | 1.14. 10 4.69- 10

Table1l: Somevaluesof the number of reducedbag sequences;, the number
of 7,-sequenceg), and the lower bound on the number of characteristicsCy, ;.
The number of verticesin a reducedbag sequencas k£ + 1 and the maximum
of the utilization sequencess at most ¢ + 1.

premature for two reasons: The degeneratecasejust cited is actually very
easyto handle: if we pipeline the computation, then a single characteristic
at every node will sutce for nding a characteristic at the root. In gen-
eral, computing characteristics\on demand" improvesthe running time on
sparsegraphs. Secondly we already obsened that many characteristicsare
redundart becausethey are subsumedby smaller characteristicsof \b etter”
solutions. The e®ectof these optimizations will be investigatedin the fol-
lowing section.

3.7 The Implementation

We implemerted the Bodlaender-Kloks path-decompsition algorithm by
substituting the de nition of the characteristic and the combination algo-
rithms into the generictree automaton \template" describedin Section2.4.
We presened the generality of the algorithm by setting up the desiredpath-
width ¢ as a runtime parameter (as opposedto a compile-time parameter)
just as the input graph and tree decompsition. The width % of the tree
decomposition doesnot occur in the description of the algorithm nor in our
implemertation|as a bound on the maximum bag size, it appearsonly in
the analysisof the algorithm. The parts of the resulting program speci ¢ to
path decompsition comprisedata structures for

utilization sequences,

T -sequences,

reducedbag sequences,
characteristics of path decompositions, and

partial solutions
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as well as proceduresfor the combination of characteristics and of partial
solutions at the di®eren tree-nade types. The functionality of the data
structures and the algorithms usedcloselyfollow the descriptionin the pre-
vious sections. In particular, partial solutions are mergedby imitating the
correctnessproofs.

Integer Sequences

Bag-utilization values (/-sequencespnd 7 -sequencesre implemerted as
arrays of integersthat support the following operations(«a, 5 € U, and o, p €
7).

len(®) returns the number of elemens in sequence.
®[i] queriesthe ith elemen of .

max ® returns the maximum of «; this takestime O(1) asthe maximum is
maintained in a variable.

® + ¢ addsa constart ¢ € N to all elemerts of a.

® ©y ~ computesfor all same-lengthexpansionsa”®, 5°, the pairwise sum
~v = o + (% retaining only sums~ with max~ < m. Not all expan-
sions are considered,but only those where at ead position, either a
new elemen from o occursin o or a new elemen from S occursin
(£°. The other sumsof expansions,especially those of length greater
than len(a) + len(5), are necessarilyexpansionsof smaller sums,hence
super°uous for our purpose. The elemerts of a &,, 3 are computed on
demandto allow pipelining with higher-lewel functions; elimination of
duplicatesdoesnot occur to avoid storing all previous sums.

¢ (®) projects o to 7 using a straightforward quadratic-time algorithm.

;(®©, ) projectsthe sum of U/-sequenceso 7, thereby discardingdupli-
cates. This is a simple composition of the a &,, 3 operation, 7(-) and a
setdata structure. Merging 7 -sequencest Join nodes,i.e., computing

7((0; & py) — |Bj)),

can be implemerted with the procedurespresened so far if we omit
the elimination of redundart characteristics.

¥4 Y comparestwo 7 -sequencesand determineswhether ¢ and p are equal
or incomparableor which of o and p is strictly smaller. The linear-time
algorithm employed originatesfrom an idea by Hagerup [Hag984.

58



¢ (®©, ) supersedeghe T(a@®,, 5) operation by purging non-minimal 7 -
sequencefrom the output. This is achieved by computing the elemerts
v € ad®,, [ oneby oneand comparing7(vy) againstthe list of previously
computed compressedsums. 7(v) replacesan earlier greater sum, or
is discardedif an earlier smaller sum is found, or is appendedto the
list if it is found to be incomparableto all list elemens. Hencethis
operation computesthe minimum number of elemens of

7((o; @ p;) — |B;l)

necessaryto ascertainthe completenesf the Join-node conbination
algorithm.

Computing Characteristics

The characteristic of a path decompsition of someG, was de ned as a list
of reducedbagswith assaiated compresseditilization sequencesln our im-
plemertation, we chosenot to store a list of vertex setsfor the bags;instead
we opted for a more compact represemation by giving for eat vertex the
number of the rst and the last bagin which it occurs. Accordingly, a char-
acteristic consistsof two lists, one of length at most |B,.| < k + 1 cortaining
the vertex intervals and a list with the 7-sequenceswhoselength equals
the number of bagsin the reducedbag sequence Although very corveniert,
our represemation is somewhatlessezcient for computing solutions from
characteristics than the \implicit" represemation given by Bodlaenderand
Kloks.

Introducing new vertices thus meansto add one vertex interval, adjust
the othersto re°ect the split, and to incremen the 7-sequencesvithin the
new range. Forgetting a vertex amourts to deleting the correspnding in-
terval, accommalating the elimination of two bagsin the other intervals,
and concatenatingtwo pairs of 7-sequences.Merging two characteristics
is performed by rst comparing the lists of intervals|the reducedbag se-
guencesmust coincide|and then outputting all combinations of choosing
one 7 -sequencdrom

(0 @m pj) — | Bjl)

for every j and m = k+ 1+ |B;|. For xed input characteristics, all four
combination algorithms produce only incomparable characteristics: This is
evidert for Start and Forgetnodes,which yield only a singlecharacteristic; for
Introducenodes,we ensurethis by newer splitting at a sequencenaximum|

it canbe shavn that only splits at maxima leadto redundart characteristics.
Characteristicscomputedat Join nodesare mutually incomparableby virtue
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of the sameproperty of the sets7°((o; &y, p;) — |Bj|). Howewer, in most cases,
the combination algorithm at a tree node is called for multiple combinations
of children characteristics;thereforeit may happen that two di®erern input

characteristicslead to the sameoutput or to comparablecharacteristics. In

this event, redundart characteristics get optionally removed by the generic
framework.

Figures 18, 19 and 20 shav somedetails of an exemplary path-decom-
position computation. To maintain coherencewith the presenation of the
theory, the characteristicsin Figure 20 have beencorverted to lists of pairs
of a bag and a 7-sequenceso at the root,

((0,01),({2},214),(0,3),({4},423),(0,20))

represems a reducedbag sequenceof an empty bag, followed by a bag with
the vertex labeled\2", followed by an empty bag, a bag with vertex \4",
and another empty bag. The rst baghasthe 7-sequenc€0, 1), the second
(2,1,4), and soon.

Benchmarks

The bendimarks were run on a Sun Enterprise 10000 computer [Cha9§,
whereup to eight testscould be executedsimultaneouslyon asmany 333MHz
Ultra-2 processorswhich sharedtwo gigahytes of main memory The pro-
gramswere written in C++ and compiled using the GNU C++ compiler. De-
tails about the software and the dewelopmern ervironment are given in the
appendix.

Our test caseswith a known upper bound on the pathwidth are createdas
in Figure 21 by using paths and cacti as\skeletons" for /-tree constructions,
similar to the triangle construction in Chapter 1. We maintain a mapping
betweentree nodesand (¢ + 1)-cliquesin the growing graph; starting with
an (¢ + 1)-clique identi ed with an arbitrary node of the tree, children of
tree nodes get their courterparts in the graph by inserting one new vertex
and making it adjacen to all vertices of the parent's clique exceptfor one
vertex, which is chosenuniformly at random. Graphs with path skeletons
have pathwidth /¢: turning the (¢ + 1)-cliguesinto bagslinked in the or-
der of construction, we get a path decomposition of width ¢. Furthermore,
these graphs are maximal in the sensethat adding any new edgewill in-
creasethe treewidth and hencethe pathwidth of the graph (Proposition 8).
Graphs generatedfrom cacti have pathwidth at most / + 1, becausein the
tree decomposition of width ¢, bagsof inner nodes can be replacedby two
consecutie bagsof size/ + 2, yielding a path decompsition of width ¢+ 1.

From thesegraphs,sparserand lessregular graphsare obtained by delet-
ing edgesat random. The necessarytree decompsitions were computed
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using the algorithm from [ACP87], which o®eredacceptableperformancefor
the graphsthat the path-decomposition algorithm could handle. Table 2
shaws the e®ectof the di®eren optimizations descrited earlier; Figures 22
to 29 shaw the performanceof the fastest con guration of the nal imple-
mentation. The following obsenations were made:

Memory consumptionrather than running time proved in many cases
to bethe limiting factor. This is especially poignart for sparsegraphs.

Thereforeit is of utmost importance to reducethe number of charac-
teristics producedat ead tree node (Table 2).

Figure 23 shaws linearly growing worst-caserunning time for a large
number of samples;the experimerts appear to indicate a constart of
ca. 30 s/node for ¢ = 2. As the test casesfrom Table 2 shaw, the
performanceis often much better. To improve performanceon sparse
graphs,a good heuristic would be to handle ead connectedcomponert
separately

As expected,the time for computing solutionsgrowsfasterthan linearly
(Figure 24); the results are inconclusive as to whether the bound is
guadratical as predicted by theory.

Thereis no particular bottlenedk in the program (Figure 22); the mem-
ory managemeh would greatly bene t from a restriction of the values
of /le.g., it would then be possibleto store ertire 7,-sequencesn
madine words instead of relying on dynamically allocated arrays.

For ¢ = 2, the performanceof the algorithm is acceptable.Beyond that,

practicality is questionable(Figure 29); it is likely that the Bodlaender-
Kloks algorithm cannot compete with the algorithms for the special
casesd = 2,/ = 3,and ¢ = 4, sudr asthe oneby Sanders[San96].

Figure 18: Graph cactus2t-03.gml andthe width-2 tree decomposition that
will be usedin the following examples.

61



Figure 19: A tree decompsition of graph cactus2t-03.gml annotated with
the number of characteristics computed at every node. This tree decom-
position is the result of corverting the tree decompsition from Figure 18
to the Start-Introduce-Forget-Join-nade format; the bold numbers indicate
bagswherethe algorithm did not computea full setof characteristicsor did
not notice that it did.
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2,4) N;,01),(f29,214),(;,3),(f49,423),(;,20)i

(2.4) ;.0),(120,12), (;,1), (f49.2 3 1), ;, 0)
2=

24) 1;,01),(20,213),(;,2), (49,3 23), ;2 0)
(2.4) ;. 01),(f29,2 1), (;,0), (f4g, 1), ;. O)
P

h;,0),(f29,13),(;,2),(f49,323),(;,2 0)i

h(;,0),(f29,12),(;,1),(f4g,2 1), (;, 0)i

h(;,0),(f29,132),(;,1),(f49,2 3),(;,2 0)i

QA3 H:,0),(F29,12), (12,89, 2), (189, 1), (f4,89,2 3), (f8g,2), ;1 0)

@ h(;,0),(f2g,12),(f2,89,3 2), (f8g,1), (f4,8g,2), (f8g,1), (;,0)i
N
h(;,0),(f2g,1),(f2,8g,2), (f8g,1),(f4,8g,2 3), (f8a,2),(;, 1 0)i

@ h:,0), (F8g,1), (f4,89,2 3), (f8g,2), (; , 1 0)i
@ h;,0),(f8g,1),(f4,8g,2),(f4,7,89,3), (f7,80,2), (f79,1), (;,0)i
(A7) G:,0), (f4g. 1), (F4,70,2), (f 70, 1), ,0)i

(4) 1G.0).(F4g. 1), 0)i

Figure 20: One path of the tree decompsition of cactus2t-03.gml an-
notated by the characteristics that lead to a solution (seethe remarks on
page60)
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Figure 21: Generating test casesby \blowing up" paths and cacti. Simple
treesguide a 2-tree construction, yielding graphswith predictable boundson
the pathwidth.
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test tree decomposition requested
case tree | width | pathwidth
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2
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Table 3: The test casesusedfor evaluating the optimizations.




Flat profile:

Each sample counts as 0.01 seconds.

yA

time
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.24
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.63
.79
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.60
.07
.88
.85
.83
.59
.58
.55
.54
.37
.36
.34
.31
.30
.23
.15
.13
.13
.01
.99
.90
.86
.85
.81

calls

9743318
9754826
9743318
5439583
9754826
16714204
4594919
27216762
1884714
4594919
13229150
24739802
1798807
3367102
11168570
7054689

8928161
10159550
8152263
5883299
14119442
8422410
14413062
4474456
14119442
5687167
4704435
2124187
8928161
11519

name
__mcount_internal

mcount

chunk_free

chunk_alloc

cfree

gen_array: :clear

malloc

leda__access<pdc::chrctr::vinfo>
memory_manager: :allocate_vector
dlist::entry

gen_array: :gen_array

memory_manager: :deallocate_vector
leda_array<char>::clear_entry
leda_access<char>

gen_array::init
lex_compare<leda_list<pdc::chrctr::vinfo> >
leda_array<char>: :operator(]

compare

___builtin_new

iseq: :operator[]

dlist::first_item
ref<pdc::chrctr>::operator*
dlist::clear
leda_list<pdc::chrctr::vinfo>::contents
leda_create<char>

leda__access<char>

gen_array:: gen_array
leda_list<pdc::chrctr::vinfo>::inf
dlist::length
ref<pdc::chrctr>::discard
dlist::append

leda_array<char>: :operator[]
tree_automaton<pdc>::ta_join::iter: :nextl

Figure 22: Excerpt from a pro le of test case6 by the gprof utility. The
‘rst two ertries indicate that pro ling incurred a 60% performancepenalty;
they are followed by the memory managemenh routines, and low-level LEDA
functions; from the algorithm proper, only somecomparisonfunction, and
the genericJoin operation shown up in this list. Even though similar results
werefound with other test casesthese gures areto betreated with caution;
e.g., suppressingthe inlining functions may have signi cantly distorted the
distribution of CPU cycles.
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Figure 23: Running time against growing graph size. For ewvery n, 32 max-
imal pathwidth-2 graphs were generatedby using a path as skeleton. Af-
ter randomly removing multiples of four edges,the time for computing all
characteristics was taken, always using the tree decompsition that derives
naturally from the construction of the maximal graph. The diagram above
shaws for eat n the greatestrunning time encounered.
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Figure 24: For the sameexperimert asin Figure 23, this gure shaws the
maximum time for computing the rst characteristic at the root (solid line)
and for computing a solution (dashedline) for ead n.
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Figure 25: Maximal number of characteristics at any tree node, plotted
againstgrowing n (sameexperimert asin Figures 23 and 24).

Figure 26: The three maximal pathwidth-3 graphsusedfor investigating the
in°uence of graph density on the running time, and the samegraphs with
ten edgesremoved at random. The results of this experimernt are shavn in
Figures27 and 28.
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Figure 27: Running time against density of graph: From ead of the three
graphsof Figure 26, one edgeafter the other was removed in random order
and after eat deletion, a path decomposition was computed, using the tree
decompmsition of the original graph. In the diagram, the number of deleted
edgesis plotted againstthe time (in seconds)}o compute all characteristics
at the root node. The number of characteristicsgrows roughly exponertially
with the number of deletededges.
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Figure 28: Running time againstdensity of graph: For the sameexperimert
asin Figure 27,the time for computing the rst characteristic at the root and
the correspnding solution is shavn. This bendimark remainsinconclusiwe.
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Figure 29: Running time for xed n and growing & and /.
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Chapted

Tree-DecongsitionAlgaithms

In this chapter, we review algorithms for computing tree decompositions. As
input, thesealgorithmstakeagraph G andanintegerk. If G hastreewidth at
most k, they computea tree decomposition of G of width at most k; otherwise
they correctly state that G hastreewidth greaterthan k. Building on suc
a procedure, it is easyto nd a tree decompmsition of optimal width, for
example,by calling the procedurewith k£ = 1,2, ... until atree decompsition
is found. Using a tree-decommsition algorithm with time bound O(g(k) -
nc)i.e., onethat exhibits the property of xed-parameter tractabilit y|and
imposingan upper bound on the treewidth, the running time for nding the
treewidth is O(n°).

While discussingthe computation of tree decompositions, we will assume
that the input graph G is connected;for graphswith more than one con-
nectedcomponert, tree decompsitions of the individual componerts can be
merged by linking the trees at arbitrary tree nodes. Section 4.1 provides
an important subroutine for many tree-decompsition algorithms. In Sec-
tion 4.2, we presen tree-decompmsition algorithms that rely on computing
separatorsand which culminate in Reed'sO(n logn) algorithm [Ree92. Sec-
tion 4.3 is dewted to a di®eren approad), by which Bodlaender [Bod964
succeededn devisinga linear-time algorithm for computing minimum-width
tree decompsitions of graphs of bounded treewidth. In this chapter, we
maintain a theoretical perspective and lay the groundwork for Chapters 5
and 6, wherewe discussissuesof practicality.

4.1 Shrinking Tree Decompositions
We presen in this section an algorithm for shrinking tree decompositions:

The algorithm takesasinput agraph G, alinear-sizetree decommsition (7' =
(X, F),{B.}:2x) of width %k, and an integer ¢ < k. It chedks whether G has
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treewidth ¢ and if so,computesa tree decompsition of width ¢. The running
time of the algorithm is O(2P°¥(%9 . n), sofor "xed k, the bound is linear in
the input size. Invented by Bodlaenderand Kloks [BK96], the algorithm isan
essetial constituert of Bodlaender'slinear-time algorithm [Bod964d, though
it is alsoneededfor post-processingthe output of procedures,suc as most
of the algorithms preserted in Section 4.2, which compute from scratch a
tree decompsition of constart but non-optimal width.

Shrinking tree decompsitions is not straightforward. For example, we
cannot turn a tree decomposition of width £ into a tree decompsition of
width ¢ by decompmsing large bagslocally and linking the resulting treesj
most of the time, it would not be possibleto join the tree decompsitions of
adjacen bags:

Newertheless the problem ts into the framework from Chapter 2 for solving
problemson graphs of boundedtreewidth. By plugging characteristics and
conbination proceduresinto the genericalgorithm, we solve the problem not
somuch by taking a wide tree decomposition asa starting point for a shrink-
ing process,asby usingthe wide tree decomposition asa guide in computing
a narrow tree decompsition from scratch. The algorithm by Bodlaender
and Kloks can be thought of as an extensionof the path-decomppsition al-
gorithm preserted in Chapter 3: computing tree decompsitions via a tree
automaton is a generalizationof computing path decompositions this way,
andwe will be ableto transfer many of the earlierresults. From the projected
time bound O(2r°Y(*:9 . ), we seethat the running time at ead node of the
tree automaton should again be independen of n; therefore the maximum
number of characteristicsat any tree node must not depend on G.

The Characteristic of a Tree Decomposition

Recall that at a tree node x, the characteristic of a path decompsition
<BZ->1. ;. m Of the subgraphG, was madeup of two constituents: the reduced
bag sequence B,);. ;. .|the projection of (8;);. ;. ,, to the bag B, at tree
node z, with repeatedbagsremoved|and compresseditilization sequences
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Figure 30: The characteristic of an exemplary tree decompsition. Black
verticesare in B,, white verticesin G, \ B,; the characteristic of the tree
decompmsition on the left consistsof the trunk on the right whoseedgesare
annotated with path-decompsition characteristics.

assaiated with eat reducedbag ]}3]», which corvey the essetial information
about what was lost in the projection. Likewise,the characteristic of a tree
decompsition S, = (' = (X, £), {B:}., 1) of graph G, is constructedby re-
stricting S, to B,, removing \rep eated" bags,and annotating the restriction
with utilization values. Note that we follow againthe corvertion of marking
componerts of partial solutionsby a hat () and parts of characteristicsby a
bar (1), while leaving objects of the badkbonetree decompsition unmarked.
Let S, = (T = (X, £),{B:}., ) beapartial solution at tree node z; we
now dewelop the de nition of the tree-decompsition characteristic C,, of S,.
To simplify the reuseof the path-decompsition procedures,we proceedas
followsto createa (tree-)trunk 1 to which we cana+x characteristicsof path
decompsitions (seeFigure 30). We reduce? to T'= (X, F) with X C X,

(1) by repeatedlyremoving leaves? for which ;N B, is a subsetof BgﬂBz
at the single neighbor #, and

(2) by removing all nodes 2 of degreetwo and making their neighbors
adjacen.

The Tst reduction rule is necessaryto bound the sizeof 7', whereasthe sec-
ond rule removes chains of nodes, which we plan to treat di®erernly: Every
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edget = (%,%) in T can be assaiated with the path from % to % in 1", and
wedene P, = (B, ..., By) to be the sequenceof the correspnding bags
in the original tree decompsition. For any trunk edget = (.,%) € F, P,
is a path decompmsition of a subgraphof G, and we let P, be the path-
decompsition characteristic of £, so 2, = (B, 72;))1. ;. m cONsistsof the
sequence(BgE N B,,... ,Bg N B,) with repetitions removed and the corre-
sponding compressedutilization sequences.Labeling the trunk edgeswith
thesepath decompositions completesthe construction of the tree decomyosi-
tion characteristicC, = (7' = (X, F), {£.}., ). Note that againwe have the
invariant that inserting the reducedbagsinto the trunk|i.e., building the
tree of bagsthat results from substituting the reducedbag sequences$or the
trunk edges|giv es a tree decomposition of bag B,; furthermore, the path
decompsitions at edgesthat sharean endpoint, sharethe last bag and the
last elemen of the compresseditilization sequencef the last bag. However,
there is a characteristic in which the trunk 7" doesnot have any edgeat all|
sud a characteristic C, at node x with a degenerate trunk represems all tree
decompsitions of G, whereall verticesof B, occurin somebag: in this and
only this case,reduction rule (2) leavesonly a single% with bag B; 2 B,.
How mary tree-decompmsition characteristics are there? By reduction
rule (1), every bag B, of a trunk leaf % cortains a vertex from B, that is in
no bag B; of any other trunk node 4 € X, % # ¥. Since B, is a bag of the
input tree decomposition and thus contains at most k + 1 vertices,the trunk
T can have at most k + 1 leaf nodesand henceat most 2k nodesin total.
Eadh of the at most 2k — 1 edgescan be labeled with one of 20(klegk+k®)
characteristics of path decompositions (Section 3.6), implying a bound of

3 .
0 '20(k10gk+kdzz)¢2ki L = 90(k logk+k2)

on the number of characteristics and a bound of 20(*lesk++*®) ., on the
running time S(n, k,¢). With a little more e®ort, it can be seenthat the
number of characteristicsis 20+ log k-+k*®)

We can easily extend the partial order < from path-decompsition char-
acteristicsto ertire characteristicsof tree decompositions: for tree-decom-
sition characteristics C,, and C? shall hold C, < C? if they have the same
trunk, soC, = (= (X, F),{P.},z) and €% = (T = (X, F), {P%},, ) and
if P, < PO for all trunk edgest € F. Sincewe are using 7 -sequencefstead
of uncompresseditilization sequenceswe aim again for the wealer kind of
completenesswhere for ead partial solution S, with characteristic C,., we
only require that a characteristic C? of a better solution S° with C? < C,
is computed. This also permits us to transfer the elimination of redundart
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characteristics from the path-decomposition caseto the tree-decompmsition
case.

Start Nodes

The combination algorithms are extensionsof the correspnding procedures
for PATHWIDTH, except for the Start-node combination algorithm. At a
Start node x with B, = {v}, partial solutions can have only the degenerate
trunk 7= ({¢},0), sothat C, = (T,0) is the only characteristic generated
at z.

Intro duce Nodes

At Introduce nodes z with child y and introduced vertex v, the input is a
characteristic C, = (7, {P.}) of a partial solution S, at node y (i.e., S, is
a tree decompsition of G,) and we are asked to compute all characteristics
C, that stand for a partial solution S, at z, where S, is an extension of
S, by the introducedvertex v. Essetially, the combination procedure will
construct all characteristicsC, that meetthe utilization bound of /+ 1 and
which reduceto ), whenw is removed. However, it takesa little struggleto
make this explicit.

When we manipulate a path-decomposition characteristic P(g—c,g) that is
part of a tree-decompsition characteristic C, of a partial solution S, i.e.,

Sx = (T: (Xvﬁ)a{éi}jﬁ)%)a
= (= (X F) {P:}ear),
pm (Be.g)s T ) 3

we must bear in mind that someof the reducedbags J}B(M)J may originate
from a subsequencef P ; = (B;,..., B;) cortaining bags B: where 2 has
in T a branch that gets eliminated by the reduction rules (1) and (2).

Figure 30, the rst inner bag from the top at the long edgeis an exam-
ple of sud a 2. Which operations on the partial solution S, correspnd to
inserting v into P(wy using the Introduce-nale combination algorithm for
path-decompsition characteristics? Let ]5(0_ 7 denote the result of sud an
insertion; the correctnessroof of the algorithm gave instructions on how to
repeat bagsin Px 5 andwhereto add v sothat the resulting P %) haschar-
acteristic ﬁ’(o, ~ Sofar sogood, but what happensto the branchesthat were
cut o®in deriving the characteristic C', from S,? We just attach them to ex-
actly oneof the (possible)repetitions of 2, thus preservingthe validity of the
tree decomposition with respect to verticesother than v. Similarly, merging
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two path-decommsition characteristics ") and P, ,, with the Join-node
corrblnatlon algorlthm inducesan equwaﬁert operatlon on the correspnd-
ing ﬁ’ ) and P = and we can reattach branchesto the result without any
problem

We beginthe discussionof the Introduce-nale combination algorithm for
tree-decompsition characteristicswith the computation of characteristicsC',
that have the sametrunk asC,. If C, hasa degeneraterunk without edges,
C, = C,isavalid characteristicat z|meaning \all verticesof B, in abagin
somepartial solutionat z"|if |B,| < ¢+ 1. If the trunk of C,, hasat leastone
edge,we chek to which reducedbagsin path-decomposition characteristics
P, the new vertex v can be added: all edgesbetweenv and other vertices
of B, haveto be covered,the bagscortaining v must be connected,and the
utilization limit ¢+ 1 must be respected. For ead sudt legal way of adding
v, the compressedutilization sequencesre split and updated accordingly
Thus we get all characteristics C,, wherethe trunk coincideswith the trunk
of C,; correctnesss immediate sincepaths in someS, behave just like path
decompsitions and, as argued above, truncated branches do not pose a
problem.

To obtain the characteristicsC,, whosetrunks di®erfrom C,,, obsene that
the trunk only changeswhenremoving v from C', leadsto a trunk leafwhose
bag is a subsetof the neighbor's bag|this can only happen if v is in the
bag of the leaf, but in no other bag. Conversely assumethat all edgesof v
are covered by putting it in a single reducedbag B from any reducedbag
sequencen C,. We createall possibledecreasingchains of bags

(B, B\ {u1}, B\ {u1,uo}, ..., B\ {u1,...,up 1}, B\ {ug, ..., u})

that start with B andendwith somesubsetB\ {1, ..., u,} with all neighbors
of v in B,; inserting v into the last bag of such a chain,

(B, B\ {w1},..., B\ {ug,...,up 1}, (B\ {ug,. .., u}) U{o}),

makesreduction rule (1) inapplicable, sothat we can extend the trunk by a
new leaf 4, and assaiate the edgeé from ¥ to its neighbor with the path-
decomsition characteristic 2. formedby the bagsof the chain and arbitrary
T-sequences; with min7; > |B\ {u,...,u;}| for 0 < j < r, minz, >
1B\ {u1,...,u.}) U{v}], and maxr; < £+ 1for 0< j <r:

ﬁé = <(B77—0)a"'7(B\{u17--~7u7’}) U {U}7T7‘)>‘

If B correspndsto a node % in the trunk (i.e., it is a last or st bag of a
reducedbag sequence)we make ¢ adjacert to %, i.e., & = (%,%). Otherwise,

77



B correspndsin some" to a node 2 that was removed by reduction rule
(2); we put a new ¥ correspnding to £ into the trunk; then we split the
T-sequenceof B at all possible placesto create two path-decompsition
characteristics, which go with the two edgesthat replacethe old trunk edge
\through #£". We attach P to e := (%, %) asbeforeand have syntactically a
characteristic C,. If C, hasa degeneratetrunk, we create characteristics C,
by setting B = B, and applying the sameconstruction.

Givensud aC, and a partial solution S, at y with the input characteristic
Cy, we can easilyidertify the bagin S, that correspndsto B and add the
samechain to it. Sincein G, v canhave only edgedo other verticesfrom B,
(and by Lemma14not from G, \ B,), all edgesare coveredand v only occurs
in a connectedsubgraphof the tree decompsition. Sud a S, evidertly has
characteristic C,, hencethe algorithm behavescorrectly in the caseof a trunk
extension.

Let us addresscompletenessgiven a partial solution S,., which haschar-
acteristic C,, we have to shav that a characteristic C° with C° < C, is
computed by the preserted procedure. By the induction hypothesis,we get
a characteristic C) from y that is smaller than the characteristic C,, of the
restriction S, of S,. Inasmuch as Og < C,, they are comparableand hence
have the sametrunk and reducedbag sequences.So if we can show that
v can be addedto C, yielding C,, then v can be inserted into C;’ in the
sameway|splits of 7-sequences in C, are imitated by the correspnding
T -sequencer in Cg by rst building the common-lengthexpansionss® and
7 with 7% < ¢, and splitting 7° at the, say, leftmost position where the
split elemen from o occursin o°. Obviously, the C° constructedthis way is
smallerthan C,.

We concludethe proof of completenesdy shawving that on input C,, the
combination algorithm indeedoutputs C,. Going from S, to S, wherecanv
appear? If C, and C, have the sametrunk, the completenes®f the introduce
operation for path-decomposition characteristics guararteesus that the 7-
sequencesf C, or smalleronesreally are computed. If the trunks of C, and
C, di®er,then v canonly occur in the path-decompsition characteristic of
a single new edgein the trunk; the conbination algorithm nds all possible
nodesin the trunk of C, to which the new node can be joined, and labels
the new edgewith all possiblepath-decomposition characteristics.

Forget Nodes

Let = be a Forget node with child y and forgotten vertex v. Eadch character-
istic C,, at y givesrise to one characteristic C,, at z: v is removed from alll
path-decomposition characteristicsand then the reduction rules (1) and (2)
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are applied againto shrink the trunk wherenecessaryconcatenatingreduced
bag sequencesind concatenatingand recompressinghe 7 -sequence®f the
boundary bags. For ewery suc C,, there is a C;, from which it originates
and by the induction hypothesis, there is a partial solution S, at y with
characteristic C,,. Clearly, S, := S, hasat = characteristic C,, which proves
correctness. Given an S, with characteristic C,, we shav that a C? with
og < C, is computed: At y, S, := S, is a partial solution with character-
istic C,. By induction, a CY with C} < C, is found; since C} and C, are
comparable,they have the sametrunk and the samereducedbag sequences.
So \forgetting” v from both Cg and C,, resultsin someC? and the charac-
teristic C, of S,. They satisfy C° < C,, and since C? is the output of the
conbination algorithm on input C°, completenesss proved.

Join Nodes

Merging characteristicsC, and C, at Join node z with children y and = canbe
largely reducedto mergeoperationson path-decomyosition characteristics. If
C, and C, di®erin their trunks or reducedbag sequencesno characteristic
C, is produced. Otherwise, the path decompmsitions at ead edge of the
trunk are combined individually and every way of choosingonemergedpath-
decompsition characteristic at ead edgeyields one characteristic C, at z|
the trunk of C, is that of C,, and C,. If C, and C, have a degeneratetrunk,
the characteristic with a degeneratetrunk is producedat z if |B,| < ¢+ 1.

The correctnessand completenesgroofs prot from the fact that pairs
of path decompsitions are conmbined independerily. Given a characteristic
C, computed at x, we construct a solution S, with this characteristic: By
induction, there exist partial solutions S, and S, with characteristics C,
and C,, respectively. The paths corresp)ndlng to path decommsitions 2. at
trunk edgest are mergedlike path decompositions, exceptthat in repeating
bags,branchesattachedin G, \ B, or G, \ B, arenot repeated. The resulting
S, is a partial solution at = and has characteristic C,.

As for completenessyve are given, asusual, somepartial solution S, and
want to exhibit a characteristic C? that is at leastasgood asthe character-
istic C, of S, and which getscomputedfrom some(]g and C?in the full sets
of characteristicsat y and z, respectively. Restricting S, to G, and G, gives
partial solutions S, at y and S, at z; to their characteristicsC', and C,, char-
acteristics CS < C, and C?% < C, are computed by the induction hypothesis.
The completenessf the path-decomposition join operation implies that at
eah edget € F, a path-decompsition characteristic ]50 will be computed
from CO and C? that is smallerthan the correspnding path-decompsition
characterlstlcm C,. Labeling the trunk edgeswith thesePOproducesa char-
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Figure 31: Removing the verticesof bag B, separateghe graphinto acompo-
nert G'\ G, towardsthe root r of the tree decompsition and two componerts
in G, \ B,.

acteristic C° < C,. If the characteristic C, of S, has a degeneratetrunk,
then C, and C. will have degeneratetrunks as well. By the induction hy-
pothesis, C, and C, are computed at y and z, respectively, becausethere
is only a single characteristic with a degeneratetrunk. All vertices of B,
must occur in a singlebagin S,, sohave |B,| < ¢+ 1 and the combination
procedureproducesC,.

Computing Solutions

Oncea characteristic of a tree decompsition hasbeencomputedat the root
of the badkbone tree decomposition, we can follow the constructions of the
correctnessproofsto construct a tree decomposition of width ¢. The partial
solutions thus computed have size proportional to the number of vertices
of the respective subgraphs;therefore the tree decompsition at the root
has size O(n). Moreover, Bodlaenderand Kloks shov how to compute this
tree decomposition in time O(n) by using a suitable represemation for path
decompositions. This completesour discussionof the algorithm for shrinking
tree decompsitions; armed with this important subroutine, we now attack
the tree-decompsition problem proper.

4.2 The Sepaator Approach

An outstanding property of graphs of treewidth % is that they have small
separators. In a rooted tree decompsition (7' = (X, F),{B,}.2x) of G =
(V, F) there is a bag B, sothat removing all verticesin B, disconnectsthe
graphinto acomponert G\ G, and seeral componerts in G, \ B, (Figure 31).
Intuitiv ely, choosing tree node = to be \near the certer" of 7" meansthat
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removing B, decommsesG into parts of balancedsize. Indeed, if we de ne
a balancedseparatorto be a set of vertices S whosedeletion from G leaves
componerts of at most |V \ S| vertices, then G hasa balancedseparatorof
sizek+ 1: assumehat for all adjacert tree nodesz andy wehave |B,\B,| = 1
and |B, \ B;| = 1 and that all bagshave sizek + 1 (a tree decommsition
of this form exists becauseG is a partial k-tree, seeProposition 7). Every
inner tree node of sud a tree decomposition disconnectsG; we start at any
inner z and chedk for ead neighbor y of = whether removing B, from ¢
givesmore balancedcomponert sizesthan removing B, from G. As long as
an improvemert can be made, we repeat the procedurewith this neighbor.
At termination, no morethan 3(|V| — (k + 1)) of the verticescan be in any
componert. It can also be shavn that in any graph of treewidth %, there
existsa vertex set of sizek whoseremoval leavescomponerts of sizeat most
§(|V| — k) (see[Bod96b] for an overview of the relations between di®eren
kinds of balancedseparatorsand treewidth).

Sographsof boundedtreewidth have small separators,and someof those
separatorsare \central" bags of tree decommsitions. A number of tree-
decompsition algorithms are basedon this obsenation, among them the
onesdescribed in [ACP87, Lag9Q MT91, Ree92. A naAe approad might
be as follows: Find a separator of size k + 1, recursively compute tree de-
compositions of eadh componert, and glue the resulting tree decompositions
together using the separatoras commonroot. The catch is that we have to
ensurethat in ead partial tree decomposition, the vertices of the separator
occur all in one bag; otherwisewe have the sameproblem aswhen shrinking
tree decompsitions by decompsing large bagslocally. We will now look
into two ways of dealing with this issue.

The Algorithm by Arnborg, Corneil, and Proskurowski

Arnborg, Corneil, and Proskurowski [ACP87] obtained the rst algorithm
algorithm for computing tree decompsitions of width & with running time
polynomial in n by using dynamic programmingon componerts of the input
graph G = (V,E). In a rst stage, their algorithm determinesall size%
vertex sets S; C V whoseremoval disconnectsthe graph; many sud (not
necessarilybalanced)separatorssS; exist in every GG of treewidth at most £,
sinceduring the construction of a k-tree supergraph of GG, every new vertex
v is madeadjacert to all verticesof a k-clique K and deleting K disconnects
v from other vertices built on K. If S; coincideswith such a K, then the
componerts of G[V \ S;] have treewidth k; the idea is to decommsethem
by creating a table of all componerts of all separators{S;};. ;. ; and to use
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dynamic programming to determinethe decomppsability of the componerts
from the small onesup to the largest.

Let {Ci;}. ;. , be the connectedcomponerts of G[V \ S;] and G, :=
G[C; ;U S;]). If S; isthe root bag of a tree decompsition, thenfor all 1 < 5 <
¢;, there exists a rooted tree decomsition of GG, ; with S; in the bag of root
r; ;. Corversely if for somei, all G, ; with 1 < j < ¢; can be decommsedin
this way, a tree decompsition of G can be constructed: create a new root
node r and a bag B, = S;, and for 1 < j < ¢;, link r to the root r; ; of the
tree decompsition of G; ;. To nd atree decomsition of G; ; comprisinga
bagwith S;, we creategraphsG0 from G, ; by making the subgraphinduced
by S; complete;by Lemma1l1l, every tree decomposition of G° will beatree
decomposition of G” with all verticesof S; occurring in somebag For all i
and j, we submit (G”, S;) to alist of subproblems.

When all S; have beenfound, there is a lot of overlappingto be expected
among the {G ;+ij» and the trick is to exploit the overlaps by solving the
subproblems(Gw,S-) in the order of increasingsize. If a G?J has size at
most k£ + 1, it hasa one-bagrooted tree decompsition; we attempt to cover
larger ng with clique S; with a number of smaller graphs ngq that are
already known to be decompsable. In particular, we chedk for eah v €
G?J \ S; whether G?J canbe coveredby a family of decompmsablesubgraphs
{G) .} wa2p With separatorsS, C S; U {v} for all (p,q) € D, sothat the
G}, only overlap on S; U {v}. In this case,we createa root r;; and a bag
B, , = S;U{v}, and for ead (p,q) € D, welink r;; to the root r,,, of the
tree decomposition of GO This yields a rooted tree decompsition of GO

We prove by mductlon on the sizeof the subproblemsG that ewvery GO
of treewidth & will be decompsed: If G({ has sizeat most k: + 1the tr|V|aI
one-bagtree decommsition is found. Otherwise, let S; be the separator
that gave rise to G?; since G7; is a partial k-tree, a k-tree supergraph
of G?J can be obtalned by taking S; as the initial basis for adding some
vertex v and constructing k-trees {H,};. ;. ,, basedon the k-cliques K, =
(S; UA{vp) \ {u}, v € S;. If K, is used as basis for H,, then removing
K, separatesG. Hencethere existsa p = p(¢) sud that S, = K, and a
q = q(¢) sudh that G , derivesfrom H, by edgedeletion. Goq is smaller
than GO becauseit does not include u; by the induction hypothesis, it is
successfullydecomp)sed The {G 0,900 H. ¢ m COvEr GO and overlap only
on S; U {v}, thereforethe algorlthm ‘nds atree decomp)smon of GY,. If G
hastreewidth at most &, then it is a subgraphof a k-tree with a basis.S; that
separatesG; we proved that a tree decomposition is found for ead of the
connectedcomponerts G?J andthat thesetree decomp)sitioncan bemerged
into a tree decompsition of G. We have to consider ;' candidates for
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separators,and for eat candidate S, we have to do work of order n to ched
whether rer@onng S leadsto more than one connectedcomponert. There
areO(n- ;)= O(n*+1) subproblems(G”,S) and potential coverscanbe
examinedin time O(n) by usingappropriate pointer structures. Thereforethe
time complexity of the algorithm is O(n**2). This is not quite asdevastating
asit may appearat rst, aswe will seein Section5.2.

Using Balanced Separators

We now return to balancedseparatorsand introduce the framework under-
lying someof the more sophisticatedalgorithms for computing tree decom-
positions. When eath componert has size lessthan a constarnt fraction of
the original graph's size,then using the procedurerecursiwely on the compo-
ners leadsto a recursiondepth of O(logn). The best algorithm to date for
‘nding suitable separatorshas beendiscorered by Reed[Ree92, who shaws
how to nd \approximate" separatorsin time O(n). To beat his O(nlogn)
algorithm, a new idea like the one presentied in the next sectionappearsto
be necessary

Instead of adding edgedo enforcethat certain verticesendup in the same
bag, the notion of a W -separator will allow us to specify the treatment of
the distinguishedverticeswhen the graph is cut. Givenagraph G = (V, E)
and a vertex setWW C V, we call S C V' a W-separatorif every componert
of G[V \ S] cortains at most two thirds of the vertices from W. In other
words, the componert sizeis measurednot by the total number of vertices
but by the number of verticesfrom 1. The following theorem from [Ree92
setsthe stagefor a procedureto compute a tree decomposition of width at
most 4k + 3 or to decidethat the graph hastreewidth greaterthan k.

Theorem 20.

Q) If G = (V,E) hastreewidth £, then for any W C V, thereis a W-
separatorof sizek + 1.

(2) If G contains for all W C V a W-separatorof sizek + 1, then G has
treewidth at most 4% + 3. 5

The rst part of the theoremfollows from the fact that either many verticesof
W arein a bag of sometree decompsition (choosethat bag as 1//-separator
of order £+ 1) or we can nd a bagin the tree decompsition suc that at
most half of the verticesof I are in any subtree. We prove the secondpart
constructively by assembling a recursive function that actually computesa
tree decompsition of width at most 4k + 3. With ead invocation, we pass
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asparametersa graph GG and a vertex set IV of sizeat most 3k + 3 that must
be contained in a bag of the returned tree decompsition.

We start by calling a subroutinethat computesa W -separatorS’; the way
S is computed is the distinguishing feature of the algorithms basedon this
approad. If there is no WW-separator,then by casel of the theorem, G has
treewidth greaterthan k. Otherwise,let C; be the componerts of G[V \ 5]
and let G; := G[C; U 9], i.e., the G, are the di®ereh componerts including
their overlap S. Obviously, theseare the graphsfor the next recursion;the
W; for the recursiwe invocations consistof the verticesthat W shareswith G,
plus all of S, soW; := (W NG;)US. This is a reasonablede nition sincewe
canlink the bagswith W, to a new bag consistingof W U S to combine the
tree decompsitions of the subproblems;luckily, the sizeof WW; is boundedby

(W NG|+ |S| g%\WH (k+ 1)< §(3k+ 3)+ k+1=3k+3
and that of W U S is boundedby
(Bk+3)+ (k+ 1)< 4k+ 4

These inequalities provide an explanation for the \magic" values for the
width 4k + 3 in Theorem 20 and the bound 3k + 3 on |W|. It can alsobe
seenthat balancing the 1/ -separatorsmore preciselycan get the bound on
the width closeto 3k + 2, but not smaller. Hencewe needto shrink the
output tree decomposition to the optimal width using oneapplication of the
algorithm by Bodlaenderand Kloks describedin Section4.1. Beforewe move
on, we recapitulate the signi cance of using ¥ -separatorsinstead of \plain"

separators. The latter do tear up the graph in suitably sized chunks, but
they fail to keepthe separatorsof subsequehrecursionlevels closetogether
in the tree decompsition, sothat S can sene both asa knot for the G; and
asan interfaceto the other componerts of the graph at the next higher level.

4.3 The Algorithm by Bodlaender

A substartially di®erem approad for computing tree decompsitions was
discovered by Bodlaender [Bod964d; our presenation is basedon notes by
Hagerup [Hag984. The idea is to construct a recursive function that for
instances(G, k) with a graph G = (V, E) computesa tree decomposition of
G by calling itself at most once. If n = |V| is greaterthan someconstart C
with C' > k, the algorithm proceedsin four stages,namely,

(1) reducingthe input to a smallergraph,
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(2) recursiwely computing an optimal tree decompsition of the reduced
graph,

(3) patching the tree decomposition of the reduced graph into a non-
optimal tree decomposition of the input graph,

(4) applying the shrinking procedurefrom Section4.1to corvert the non-
optimal tree decompsition into an optimal one.

This is to be the skeleton of a linear-time algorithm; reducing the graph
in step (1) and operating on the tree decomposition in step (4) requires
linear time per recursionstep, sowe must ensurethat the graph is reduced
suzciently in eat step to guarartee that the total work remains linear.
Bodlaendermeetsthis requiremen by eliminating a constart fraction 1/d of
the verticesin step (1), sothat there are O(logn) recursionstepsand for a
bound of cn on the wgrk per recursionstep on a graph of n vertices,the total
work is boundedby  , ¢ (1/d)' n = O(n). The key to the reduction step
is the obsenation that fusing pairs of adjacert verticeslike this

allows a tree decomposition of the reducedgraph to be transformed into a
tree decompsition of the original graph by replacingthe new vertex by the
two old verticesin all bags. This givesa tree decompsition of the original
graph becauseall restored edgesare internal to a bag, and all other edges
are covered as before; every vertex occursin a connectedcomponert of the
tree of bags,sincerestoredverticesoccur in the samecomponert asthe fused
vertex. If fusedverticesdo not participate a secondtime in a fusion, then a
width- £ tree decompsition of the reducedgraph givesrise to a transformed
tree decompsition of width 2(k + 1) — 1= 2k + 1.

Selecting pairs of adjacent vertices that can be fused simultaneously
amourts to computing a matching in G, that is, a set of edgesM C FE
in which no two edgessharean endpoint. Finding many pairs can be done
by using a greedyalgorithm to compute a matching M to which no further
edgescan be added. Doessud a maximal matching always have size O(n),
sothat cortracting all edgesin M reducesthe size of graph by a constart
fraction? It doesnot. In fact, we needto handle the caseof a small ||
separately As cortracting edgesdoesnot help for small maximal matchings
M, we resort in this caseto another operation for reducing the size of the
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graph. We try to identify verticesv in G that are leaves in the k-tree of
which G is a subgraph;\leaves" in the sensethat none of the & k-cliques
that result from adding v during the construction of the k-tree is usedto add
a further vertex. Sud verticesv have the property that there exists a tree
decompsition of G whereall of the (at most k) neighbors of v are corntained
in a single bag. The idea is to remove v and augmen the reducedgraph
by auxiliary edgesto enforcethat the neighbors of v are in any width-% tree
decomposition of the reducedgraph. When we have a tree decomposition of
the reducedgraph, a new bag with v and its neighbors can be linked to the
bag cortaining the neighbors, thus getting a tree decomposition of G.

To make this work, we have to shav that for small maximal matchings
M, a large number of leaf vertices can be identi ed. Vertices of degree
one certainly qualify as leaf vertices, and we can repeatedly remove degree-
one verticesuntil noneremain. Sincelarge matchings alsobene 't from this
reduction, we perform this elimination step before the computation of M.
We seekfurther verticesfor which all neighbors occur in a single bag in all
tree decompsitions of graph GG. In Chapter 2, we presenied two lemmas
that give suxcient conditions for verticesto occur togetherin a bagin any
tree decomposition: Lemma 11 postulated that ewvery clique occursin a bag,
irrespective of the size of the clique; and by Lemma 12, we know that for
vertex setsV; and V, C V that induce a complete bipartite subgraphof G,
we can nd in any tree decompmsition either a bag cortaining V; or a bag
containing V5. The usefulnesof Lemmal2becomesbviousin the following
consequence:

Lemma 21. If u,v € V have at least £ + 1 common neighbors, then in any
tree decomposition of width at most k&, somebag cortains both » and v.

Proof. Vertices u and v on the one side and their common neighbors on
the other side induce a complete bipartite subgraphof G. By Lemma 12,
either v and v are in onebag, or their neighbors are. Howeer, in the latter
case,we can add edgesbetweentheir neighbors without destroying the tree
decomposition; in particular, we canturn them into a completesubgraphof
sizeat leastk+ 1. Sinceu is adjacen to all of them, we actually have a clique
of sizeat leastk + 2, which contradicts the existenceof a tree decomposition
of width k: by Lemmall, a (k + 2)-clique would be cortained in a bag. 2

The plan is this: We will useLemma 21 to single out verticeswhoseneigh-
bors occur in a singlebagin all tree decompsitionsof GG, sincesud vertices
certainly are leaf vertices. Removing those vertices may add unwanted de-
greesof freedomto the neighbors, which we combat by adding new edges
to G and invoking Lemma 11. Remenber that we are consideringthe case
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of a small matching M; we let U denotethe set of endpoints of edgesin M
and treat verticesin U asan immutable skeletonfrom which we try to pluck
vertices outside of U|note that the neighbors of any vertex w € V' \ U all

lie in U becauseM is a maximal matching. For the purposeof analysis,we
X arooted tree decompsition (7' = (X, F),{B. }.2x) of G and give names
to the verticesoutsideof U: w € V' \ U is a bridge vertex if it hasneighbors
u,v € U that in the xed tree decommsition do not occur together in any
bag; we call the pair {u,v} a withessfor w. The other verticesfrom V' \ U
are called internal vertices;for every pair {u,v} of neighbors of an internal

vertex, there exists a bag cortaining both « and v. Our goalis to identify

many vertices that are internal verticesin every tree decompmsition of G.

We proceedas follows:

(1) Let A denotea table of integersindexed by unordered pairs {u,v} of
verticesfrom U; in A[{u,v}] wecourt the number of commonneighbors
of w and v that arein V' \ U; we assumethat A is initialized to cortain
all zerces.

(2) We step through all verticesw € V' \ U. If the degreeof w is at least
2k, we ignoreit. Otherwise,we considerall pairs {u, v} of neighbors of
w and incremert A[{u,v}]. The cut-o®value on the degreeof w senes
to bound the running time; e.g., processinga w of degreew(/n) takes
time w(n), compromisingthe linear running time of onerecursionstep
and of the ertire algorithm.

(3) We make a passthrough A, adding an edgebetweenead pair of nodes
{u,v} for which A[{u,v}] > k+ 1. By Lemma21, this doesnot invali-
date any tree decompsition of G.

(4) We step a secondtime through all w € V' \ U, again skipping vertices
of degreeat least 2k. If for all pairs {u,v} of w's neighbors we have
A[{u,v}] > k + 1, then the neighbors form a clique becausewe have
addedthe necessaryedgesn (3). Knowing that the neighborswill stick
together in any tree decompsition, we chedk whether w has degreeat
most £ and remove it in this case.In the other caselif w hasdegree
greaterthan % andfor all pairs of its neighborsholds A[{u, v}] > k+ 1|
we have found a proof that the graph hastreewidth greaterthan k.

Even a small maximal matching M can have size-( n). If implemerted in
a straightforward manner, A therefore has size -( n?), so that initializing
and iterating over A would take time -( n?). It is easyto avoid initializing
A and to iterate only over non-zeroertries, sowe get a linear time bound.
Moreover, Bodlaendergivesa slightly more complicated data structure that
manageswith spaceO(n).
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In a momen, we are goingto take stock of how many verticesare left in
the graph. In anticipation of a constart reduction factor, we reviewthe com-
plete algorithm: it eliminatesdegree-onevertices, nds a maximal matching,
and cheds whether the matching is suxciently large. If it is, cortracting
the edgesin the matching, invoking the procedurerecursiwely, and expand-
ing the edgesagain gives a tree decomposition of width 2% + 1, which gets
narrowed down to width % using the shrinking algorithm. All theseopera-
tions take linear time. If the matching is too small, we add someedgesto G
and remove a number of vertices, recurse,and patch the previously deleted
verticesbadk. The secondcase,too, is of linear complexity, sothe algorithm
computestree decompsitionsin time linear in n = |V| for £ xed. We can
amendthe algorithm not only to compute tree decompsitions, but alsoto
decide TREEWIDTH: If a graph hastreewidth greaterthan k, then at some
level in the recursionthe shrinking will fail, or a removable vertex hasdegree
greaterthan k, or the constari-size instance hastreewidth greaterthan k.

To de ne the thresholdsizeof M for branching into the rst or the second
caseof the algorithm aswell asto analyzethe in°uence of £ on the running
time, we have to wrap up the argumertation for small matchings; then we
know the fraction by which the graph is actually reducedin eadt recursive
call. We bound the number of verticesleft: We did not touch verticesin the
matching, thereforewe needto court all of them. De ning m := |M| asthe
number of edgesin the matching, this accours for |U| = 2m vertices. In
step (2), we skipped vertices outside of M of degreeat least 2k. If in all of
G, morethan half of the verticeshad sud a high degree then G would have
more than nk edgeswhich by Proposition 8 is impossible.

After theseboundson the number of verticeswe explicitly disregard,we
estimate the number of verticesthat rightly or inadvertently getignoredin
step (4). Bridge verticeswill newver qualify for removal in step (4), because
their neighbors are in at least one tree decompsition in di®eren bags, so
that Lemma21 cannotbe applicable. We assumehat the tree decomppsition
is rooted and againwrite T'(v) for the subtreeof 7" formed by the tree nodes
whosebag cortains v € V. SinceT = (X, F) is rooted, T'(v) hasa well-
de nedroot r(v) € X. Fora xed u € U, considerthe bridge verticesw with
witnesses{u, v} (for arbitrary v € U) wherew is in the bag B, of the root
r(u) of T'(u). SinceB,,) cortains u, it cancortain at most k£ bridge vertices
w; however, every bridge vertex must be in B, ) for someu, hencethere can
be at most |U |k = 2mk bridge vertices.

Internal vertices escag our scrutiny if their neighbors cannot be turned
into a clique. We court the number of doch(ingdocations in U for internal
vertices. Within one bag, there are at most "' possibilitiesto connectto

2
two vertices. How many di®eren bagscan there be? We ignore bagsthat
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are subsetsof other bagsand count the number of maximal bag sets with
respect to verticesfrom U. There canbe no morethan 2m maximal bag sets
sincethgre are only 2m elemeits to start with. Thereforethere are at most
2m' ¥ = mk i | look
m ", = mk(k+ 1) ways to dock an internal vertex, and to overlook an
internal vertex, its docking location must not be usedby morethan £ internal
verticesin total, leadingto a bound of mk?(k + 1) on the total number of
undiscoeredinternal vertices. Our calculation is summarizedbelow:

verticesin U: exactly 2m

high-degreevertices: at mostn/2

bridge vertices: at most 2mk

overlooked internal vertices: at mostmk?(k + 1)

total: at mostm(k3 + k*+ 2k+ 2)+ n/2

We have traded one half the verticesof G against an expressiondepending
linearly on m. By solving

m@$+k2+2k+2)=%

for m, we get a threshold value of m; ~ n/(4k*) to choosebetweenthe two
ways to shrink the graph. If the sizem of the maximal matching M doesnot
exceedm,, then the reduction amourts to

m(k3+ k2 + 2k + 2) + n/2<mt(k3+ K2+ 2k+ 2)+n/2 3
n B n

Y

Y

whereasif m > m;, contracting the edgesof the matching reducesthe sizeof
the graph by a factor of
n—m/2<n—mt/2_ 1 1

n = 7 T8t R+ 2k+2) d

that is, in both casesthe factor is boundedaway from 1 (1 > 1/d > 3/4).
Examining the individual computation steps once more, we seethat eah
stepcanbe donein time O(kn + S(n,2k+ 1,k)), whereS(n, k, () is the time
complexity of shrinking a tree decompsition of width £ to width 7 in agraph
with n vertices(seepage75). Altogether, this leavesus with a bound of

A |

X n 371
O k—+S — 2k+ 1k

) dt di’
3 &8

Ok L+ 20((2k+1)210g(2k+1)+(2k+1)2(17€)
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on the running time of Bodlaender'salgorithm for computing tree decom-
positions. Even though our analysisis far from being tight, we clearly see
that the bottlened is the shrinking of tree decompositions. Observingthat

shrinking is only neededin the caseof large matchings, we could bias the
algorithm towards treating more matchings as small by raising the threshold
m,. Furthermore, Bodlaenderremarksin [Bod964 that it is possibleto trade
to certain extert the complexity in k£ againstthe complexity in n by restoring
the cortracted edgesof the matching M in multiple iterations. If in ead bag
of the tree decomposition of the shrunken graph, only onefusionis reversed,
then the resulting tree decomposition haswidth at most £ + 1|so we select
up to oneedgein ead bag, restoreit, and shrink the resulting tree decomp-
sition of width at most £+ 1 to width at most k£. We repeat thesestepsuntil

all edgeshave beenrestored. How mary iterations are required? We cannot
always freely selectone vertex in ead bag to expand, therefore we will, in

general,needmorethan k + 1 iterations. Yet we can nd a (k + 1)-coloring
of the expandableverticesin time I(n,k) = nk using a greedy algorithm

and extract from it an independen set of expandableverticesthat has size
|M|/(k + 1). Since|M| = O(n) and we chop o®a factor of £ + 1 in ead
iteration, O(logn) rounds suxce. The running time of this algorithm is

i ¢
O' K logn (kn+ I(n, k) + S(n,k+ 1K) = 2°¢) . plogn,

but with smaller constarts than before|in the shrinking subroutine, the
path-decompsition characteristicson the trunk edgesnow comefrom a set
of size Cy41, instead of Cy,yq . Substituting £ = 2 gives lower bounds
(3o > 358- 10" as opposedto Cs5, > 3.07- 10°* (seealso Table 1 on
page57).
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Chapters

ComputinglreeDecompsitions

5.1 Generating Test Cases

Evaluating the implemertation of an algorithm meansmeasuringthe running
time onalargenumber of \uniformly" selectedsampledrom \t ypical" inputs.
Since we set out without a speci ¢ application of tree decompsitions, we
could not make any assumptionsabout the sourceof inputs. Therefore we
had to generate\random" graphs of a given sizeand a given bound on the
treewidth, so that we could investigate how tree-decompmsition algorithms
compareon arbitrary input for various graph sizesand treewidths.

We begin our discussionon the generation of test caseswith a few re-
marks on the selectionof random inputs in general;we write I,, for the set of
binary represetations of input objects of sizen, assumingthat every z € I,,
haslength O(nlogn), i.e., x canrepresemn O(n) numbersof magnitude O(n).
In most problemsin computer science se\eral di®eren input bit strings are
consideredequivalert: for SaT, we poseessetfially the sameproblem when
we rename variables or reorder the clausesof a CNF formula. Similarly,
in many graph problems, the order in which the vertices are listed in the
input is irrelevant, that is, isomorphic graphs constitute the sameproblem
instance. Formally, the set I, is partitioned into equivalenceclassegz] of the
objects y that are equivalert to x; choosinga randominput of a given length
then amourts to selectingan equivalenceclass[x] uniformly at random and
returning an arbitrary y € [z]. Graphs G, = (V4, Ey), Go = (V5, E,) are
called isomorphic, if there exists an isomorphismo : Vi — V5 sud that
(u,v) € Fy & (ou,ov) € Ey. The equivalenceclassesof general(labeled)
graphsunder graph isomorphismare called unlabeled graphs;likewise,there
are unlabeled trees and unlabeled rooted trees, the latter with the isomor-
phismsrestricted to leave the root vertex r invariant, or = r. In Figure 32,
a represemativ e of ead unlabeledtree with four verticesis shown; Figure 33
lists the unlabeled rooted treeswith four vertices. For thesethree types of
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Figure 32: The unlabeledtreeswith four vertices.
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Figure 33: The unlabeled rooted trees with four vertices (roots shown in
black).

unlabeled graphs as well as for labeled trees, there are excient selectional-
gorithms [NW78, Wil81, Tin90], that is, given a sourceof random numbers,
thesealgorithms produce an arbitrary labeled graph (not always the same)
of an equivalenceclassthat is selecteduniformly at random.

As nice as sud selectionproceduremay appear from a theoretical point
of view, judging the performanceof an algorithm basedon inequivalert test
casesentails a certain danger: an actual implemertation is likely to depend
signi cantly onthe orderin which the input is presened. Eventhe [ACP87]-
algorithm (discussedn the next section), which iterates through all separa-
tors of the graph, shows deviations of almost 100%when the input graph is
permuted, ascanbe seenin Figure 34. Newerthelesswe did extend selection
algorithms for labeled trees and unlabeled rooted trees to produce labeled
k-treesand unlabeled\ro oted" k-treesuniformly at random, assumingk and
the number of verticesn to be xed. Howeer, our resultsdo not generalizeo
partial k-trees,and dueto their minor theoretical and practical signi cance,
we refrain from presening our approad in detail; sutce it to say that there
is a bijection betweena labeled k-tree G and a tuple (7', R, ) consistingof a
labeledtree T' = (X, F'), the speci cation of a\ro ot" (k+ 1)-clique R and an
edgelabeling ! : ' — {1,...,k}, which assignsan integer to every edgeof
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Figure 34: The running time of the [ACP87]-algorithm for 16 random permu-
tations of the graph depictedin Figure 35. Error bars indicate the greatest,
smallestand averagetime for running the sameinstance multiple times; the
deviationsare causedby transiert changesin the operating ervironmernt and
are obviously negligible.

Figure 35: A graph of treewidth 3 for measuringthe dependencyon the input
order of the [ACP87]-algorithm
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T. Becauseof this mapping, selectinga labeled k-tree uniformly at random
amourts to generatingsud a tuple uniformly at random.

By a unlabeledrooted k-tree, we meanthe equivalenceclassof labeled k-
trees G underisomorphismso that map the verticesof a given (k + 1)-clique
R in GG unto themsehes,i.e., cv = v for all v € R; it canbe shavn that rep-
reserativ esof every unlabeledrooted k-tree occur equally often in a certain
setof tuples (7, R, ) consistingof a represetative 7" of an unlabeledrooted
tree, an arbitrary root clique, and an edgelabeling [ from a certain subsetof
permitted edgelabelings. Choosing sud a tuple uniformly at random and
constructing the correspnding labeled k-tree then givesa represemativ e of
a uniformly chosenunlabeledrooted k-tree.

Our \grut" padage of graph utilities has programsfor creating labeled
and unlabeled rooted trees uniformly at random, for creating random k-
trees using labeled trees as skeleton, for deleting a given number of edges
at random, and for randomly permuting the vertices of a graph. Further
information on this software is provided in SectionA.1 in the appendix.

5.2 The Algorithm by Arnborg, Corneil, and Proskurowski

Only the rst tree-decompmsition algorithm descriked in the previous chap-
ter, the O(n**2) procedurefrom [ACP87], can do without the Bodlaender-
Kloks shrinking algorithm. In spite of its enormousasymptotic bound, our
implemertation of the [ACP87]-algorithm did work quite well for k£ = 2, and
meaningful results could be obtained for £ up to 4. Figures 36 and 37 shov
the results on a few bendimarks. The test caseswere constructedby gener-
ating for ead »n three random unlabeledrooted treeswith n — k& nodes,and
using theseas skeletonsfor random k-trees. From those\maximal" graphs,
edgeswere deletedin bunchesof 10% of the k-tree's edges,getting 11 test
casesfrom ead of the three skeletons,or 33 for ead n. The tests wererun
on the samecomputer as the path-decompsition algorithm (seepage 60),
but with limits on running time (30 minutes) and on the main memory (597
megalytes to allow three tests to run concurrerily). The statistics in Fig-
ures 36 and 37 shaw for ead n and k the greatestmeasuremetjno enry
meansthat either for this choice of n and k, at least one test run violated
the limits or that all runs had too small running time to yield meaningful
measuremets.

Except for interrupting the tabulating of subproblemsas soon as a so-
lution is found and running the [ACP87]-procedureseparatelyon ead con-
nected componert of the input graph, no further optimizations were imple-
merted; in particular, no boundson & were assumed.
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Figure 36: Running time in secondsof the [ACP87]-algorithm for di®erer
treewidths k, plotted againstthe number of verticesn.
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Figure 37: Memory consumptionin kilobytes of the [ACP87]-algorithm.
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Chapter6

Conclusions

6.1 Shrinking Tree Decompositions Is Not Feasible

The more advancedseparatoralgorithms and Bodlaender'slinear-time algo-
rithm depend heavily on a procedurefor reducing tree decompsitions from
non-optimal bounded width to the minimum width. This procedure was
provided in Section4.1 in form of the shrinking algorithm by Bodlaender
and Kloks, which is an extensionof their path-decompsition algorithm for
graphs supplied with a bounded-width tree decomposition. In Chapter 3,
we analyzedthis path-decomposition algorithm and found that the construc-
tion cannot be simpli ed much; becauseof its importance as a fundamenal
building block of tree-decompsition algorithms, we put a large e®ort into
implemerting it as exciently as possible. Despite our quite signi cant im-
provemeris sud asthe elimination of redundart characteristics, pipelining,
and cading, our experimerts led us to the conclusionthat path decomposi-
tions of width greaterthan 3 cannot be computed using this approad even
for graphsof 16 vertices. The tree-decompsition shrinking algorithm makes
extensi\e useof the combination proceduresfor path-decompsition charac-
teristics; hencethis algorithm, too, must be impractical for widths greater
than 3. Indeed, the number of potertial characteristicsgrows even faster in
the caseof reducinga tree decomposition from width % to ¢ than in comput-
ing a path decompsition of width ¢ from a tree decomposition of width &:
the asymptotic boundson the number of characteristicsare

2 2
20 (k? log k+k2@) 20 (klog k+k)

and n,
respectively. In Chapter 4, we derived a lower bound of 3.58- 10'* for the
maximum number of di®eren characteristicsat a tree node when reducing
width-3 tree decompsitionsto width 2. This huge gure strongly suggests
that even a single call to the Bodlaender-Kloks shrinking procedureis not
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feasible,much lessrepeatedinvocations asin Bodlaender'slinear-time algo-
rithm.

On the other hand, Sanders[San96]gives a linear-time algorithm for
computing tree decompositions of width 4 and he considersit to be practi-
cal; for widths below 4, simple graph-reduction algorithms were derived by
Arnborg and Proskurowski [AP86]. Hencewe concludethat neither tuning
the separator-basedree-decompmsition algorithms nor implemerting Bod-
laender's algorithm would extend the range of tractable problem instances
beyond the widths for which special-purposealgorithms exist.

6.2 Further Directions

We set out to investigate the practical value of tree-decompmsition algo-
rithms of the most general type, which for any input graph G and any
requestedwidth £ compute a tree decomposition of width % or state that
the graph has treewidth greaterthan k. The sobering result is that com-
puting optimal-width tree decompositions is|with today's algorithms and
computers|in tractable for widths greaterthan 4 and graphslargerthan, say,
16vertices. We already mertioned that for eat valueof k£ up to 4, algorithms
basedon graph reduction have beenconstructed; Sandersclaimsthat despite
the needto di®ereniate betweensomeone hundred special casesthere are
no large hidden constarts in the analysis of his algorithm. Howewer, even
if it were not practical, the algorithms for treewidth up to 3 certainly are;
only six rules for rewriting graphs sutce to de ne the graphs of treewidth
at most 3 asthose graphsthat can be rewritten to the empty graph.

It wasbeyond the scope of this work to implemert algorithms for particu-
lar treewidths, not least becausean excient implemertation would probably
not be straightforward. Moreover, oncewe deviate from our original objec-
tive of examiningthe practicality of generaland completetree-decompsition
algorithms, there are plenty of alternative ways to proceed. For certain real-
world applications, tree decompositions of non-optimal width might be ac-
ceptableor further knowledgeabout the input could be usedto improve the
calculation of the boundsor to speedup the preser algorithms or to devise
completelynewalgorithms. Moreover, in three-dimensionalspring-enbedder
layouts of densek-trees, their \tree structure" appearsto unfold (Figure 38),
and this obsenation might help to dewelop useful heuristics. All these ap-
proachesrequire a thorough analysisof the concreteapplication to idertify
further properties of the problem at hand; the huge constarts arising from
the generaltechniquesof using tree decompsitionslead us to the conclusion
that the generality of the treewidth theory makesit|without considerable
specialization|un usablein practice.
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Figure 38: Snapshotof a three-dimensional\Virtual-Realit y" rendering of a
3-tree. We have added a large grid for aiding orientation when navigating
through the graph using standard viewing software. Our implemertation of a
spring-enbedderlayout algorithm and a program for translating graphswith
a layout into Virtual-Reality scenesare part of the \graph utilities" padage
descrited in the appendix.
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6.3 Comments on the Development Tools

The majority of the software deweloped as part of this work was written

in the C++ programming language[SE90]using LEDA, a library of excient

data typesand algorithms [MNSU9§. In this section,we addressdrawbadks
of this approad in the hope that our commerns will be useful for future
experimertal algorithm implemertations. All things consideredwe consider
C++ and LEDA to be amongthe besttools currently available, yet with much
potential for improvemen. Joyner [Joy96] givesa comprehensie list of the
shortcomingsof the C++ languagein general;therefore we discussonly the
iIssuesthat arosein our programmingwith LEDA.

C++ Standardization

At the time of writing, the C++ standard (ISO/IEC 14882:1998has been
oxcially approved for two months, though not yet published. Until the stan-
dardization e®ort, the C++ language ewlved through extensionsthat the

invertors of C++ at AT&T Researb Labs madeto their cfront compiler,
extensiongthat wereapproximately copiedby seeral compilervendors. Dur-

ing the processof standardization, which started in 1989,signi cant changes
were madeto the language,and subsequen drafts of the standard were fol-

lowedto avarying externt by the di®eren compilers. Consequetly, it appears
that the standardization of C++ led for many yearsto a lessstable speci -

cation of the language,and this will changeonly slowly asvendorscatch up

with the nal standard. Our programswritten with LEDA were a®ectedin

three ways by the ewlution of the C++ language:

e Each compiler releasewith incompatible changesto the languagene-
cessitatedthe adaption of all sourcecode. For example, the scope
of variable declarationsin the for loop was changedfrom GNU C++
version2.5to 2.6, making the code in Figure 39 illegal, whereasprevi-
ously, a redeclarationof i wasconsideredo be an error. More obscure
changes,sud asthe abolishmen of \guiding declarations," the intro-
duction of the typename keyword, and modi cations to the resolution
of overloadedfunctions (i.e., functionswith the samenamebut di®eren
argumernt types)causedcompilation errorsthat were hard to diagnose.

e Releasesnf LEDA always supported the compiler versionsthat were
current at that time. As a consequencethere is usually only a small
range of compiler versionswith which any given LEDA releaseworks;
hence,the \C ++ dialect” of our programsis largely determinedby the
choice of the versionof LEDA.
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for (int i=0; i<10; ++i) {
// do something

}

for (i=0; i<10; ++i) {
// do something

}

Figure 39: Originally, variablesdeclaredin the headof a for loop belonged
to the surrounding scope, so the code snippet above was correct. In ISO
C++, howewer, i belongsto the scope of the body, sothat it is undeclaredin
the head of the secondfor loop.

e The ISO C++ standard de nes classesfor basic data structures suc
as arrays, lists, and sets. The accesso these structures using \STL
iterators" di®erssigni cantly from the \LEDA style" of using macros
sudh as forall. In the early stagesof our implemertation, LEDA did
not support the new style of accessingdata structures, so that the
interoperability with the new standard library was limited. Moreover,
the LEDA style of enumerating elemens wasawkward to implemert for
our own classes.It appearsthat in the current release, STL iterators
are, for the most part, supported.

C++ Compilation Speed

The great complexity of the C++ languageis re°ected by large compilation
times. As an example,recompiling after making a changeto a certain source
le in the \tdecomp" project took well over half a minute on a SUN Ultra 1
workstation; this was with all compiler optimizations disabled. Even for
medium size test cases,compiler optimizations were highly desirable, but
enabling them increasedthe compilation time by a factor of three. When
changesinvolved header Tes, the delay was even greater becausea header
‘Te is usually included by seweral source les, eat of which needsto be
recompiled.

Speci cally, our criticism is that in C++, small changesoften ertail com-
pilation times that grow with the size of the project. The modi cation of
an inline function causesall clients of a classto be recompiled, even when
optimizations are disabled. The overheadof parsing library declarationsis
reducedby somecompilersusing \pre-compiled headers",yet onewould ex-
pect the compilerto nd out whether a changea®ectsa classinterface and
thus dependent classes,and only in this caseto recompile the dependert
classesHowewer, C++ is designedtowards only examining one source le at
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a time, all but precluding project-global analysis.

Tracking and Copying Objects

The memory managemen of C++ turned out to be a substartial impedimert

to implemerting large algorithms exciently. Considerthe data structure for

characteristics of partial solutions in the generictree-automaton algorithm

(Section 2.4). Combination proceduresconstruct C++ objects represeting

sud characteristics;an object may get insertedinto the cade of the current

tree node, or get passedto the parernt of the tree node, or be stored with a

partial solution that is being generated.All in all, referencego theseobjects

are kept in many placesand not all objects are treated the sameway; how-

ewver, sincespaceis a scarceresourcefor the path-decompsition algorithm,

we needto releasethe memory occupiedby a characteristic soon after it is

not referencedanymore. The lifetime of the objects represeting character-

istics is not determined by a static scope, so they needto be dynamically

allocated and dynamically freed. For dynamic memory managemety C++

o®ersthe new and delete operators, which normally allocate and release
memory using the C functions malloc and free. In other words, the pro-

grammer hasto nd out when an object is no longer used, and then call

delete. For objects with sud \div erse" lifetimes as characteristics, this is

a ditcult task; we were forced to count the referenceso ead object and

disposeof it as soon asthis court readed zero. Similar referencecourters

are manually implemerted in many placesin current C++ libraries, sud as
the GNU implemertation of the ISO C++ string classand the LEDA classes
integer andrational. Nonethelessthis approad hastwo distinctiv e draw-

bads: circular referencescannot be detected, and there is no uniform way

to implemert referencecourting. One way to furnish referencecourting to

arbitrary classess to designa referencetemplate ref<class>, which behaves
like a pointer to an object of classclass, but callsdelete onthe object when

the last ref<class> referenceto it is discarded. This approad fails due to

clasheswith the type systemof C++; for instance,there is no way to make

ref<parent> a superclassof ref<child>. Analogousobstaclesrule out solving

the problem by bequeathingclasseswith a referencecourter from an ances-
tor classrefcountable and, in any case,the programmercannot be forced
to handle\raw" pointers correctly.

When using LEDA|or, for that matter, any other library of data struc-
tures|the lack of a garbagecollector leadsto redundart copying of objects:
Inserting a large object, sud asthe represemation of a characteristic, into a
LEDA 1list causesthe object to be copiedinto the set; LEDA cannot store
a pointer to the object becausethe original object might be delete-d just
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after the insertion. Remaoving the rst elemen of a list and storing it in a
variable again involves a copy operation; worse, any object returned by a
function needsto be copied,aswe explain using the examplein Figure 40. A
is someclasswith a copy constructor and a constructor taking no argumen;
the function main calls func, reserving spacefor the return value on the

A func()

{
A al, a2;
// some computation
if (condition)

return al;
else
return a2
}
main()
{
A result;
result = func().do_something();
}

Figure 40: Example of redundart copy operations.

stak. After func is entered, the constructor taking no argumert is called
for the objects a1 and a2, with memory allocated on the stadk frame of
func. At ead of the return statemerns, the copy constructor is called with
al or a2 asparameterto createan object in the arearesened for the return
value. This copy operation could be avoided if it were clear at the entry of
func which object would be returned; in Pascal, for example, the implicit
return variable getsthe nameof the function and sothe problemis avoided.
A sophisticatedC++ optimizer might be able to save most copy-constructor
calls, yet the casualC++ programmeris probably not aware of this problem
and the compilerswe chedked (GNU and Sun) did not optimize it away.

Pipelining

Pipelining is a programming technique to avoid storing intermediate results,
to computeresults\just in time," andto parallelizeproducersand consumers
of data. To that end, subroutinesthat normally return list data structures
are converted to computethe elemerts of the list oneby one. The caller does
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list<characteristic> combine(...)

{

loop_state i;
for (init(i); valid(i); next(i)) {
// construction of a candidate of a characteristic
if (found_characteristic) {
full_set.insert(new_characteristic);

}

return full_set;

Figure 41: A C++ function with aloop computing a setof full characteristics.

characteristic next_combination(loop_state &i, ...)

{

if (!initialized) {
init(i);
}
goto inside;
for (; valid(i); next(i)) {
// construction of a candidate of a characteristic
if (found_characteristic) {
return new_characteristic;
}
inside:
}
// all characteristics have been returned
return no_more_characteristics;

Figure 42: A construct for pipelining the loop in Figure 41. Eadc invocation
of this function returns one new characteristic or states that there are no
further characteristics.
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not enumeratethe elemetns of the list, but requestsfurther elemens from the

subroutine, sothat the list is never completelyinstantiated. Moreover, only

the elemerts of the list that are neededby the callerareactually computed;in

parallelizedsetting, the caller and the subroutine canwork concurrertly, i.e.,

while the caller processe®ne elemer of the list, the subroutine can already
produce the next. Pipelining is used on many levels of computing, sud

asin arithmetic circuits of microprocessordPH90] and in databasesystems
[SKS91.

Converting sourcecode to take advantage of pipelining requiressomeun-
cleanworkaroundsin C++. Namely, corverting a loop asin Figure 41 with
(possibly large) proceduresinit, valid and next necessitatesa construct
like that of Figure 42 wherethe variablesinitialized and i must be con-
sened acrosssubsequen requestsfor the next characteristic. The goto can
be avoided by turning the for loop into a do {...} while-loop, howewer,
the problem of maintaining the state of the loop courter i remainsand gets
much worsefor nestedloops. It is possibleto usemultithreading in C++, but
the languagelacks coroutines[Mar80], which would allow an implemertation
of pipelining that is both cleanand excient.

An Alternative

After investigating se\eral programming languageswe found that the Ei®el
programming language[Mey92 remediedall the problemswe encourtered
in programming C++. It has a powerful object systemwith multiple and
repeated inheritance, exception handling, generic classescorresponding to
templatesin C++), and garbagecollection. Among its unique featuresis the
support for \Programming by Contract,” where preconditionsand postcon-
ditions of functions and classinvariants are speci ed within the language,
allowing them to be inherited by functions in derived classesand extracted
by automatic documertation tools. The term \Programming by Contract"
stemsfrom the interpretation that whenobject A invokesmethod m of object
B, A guararteesthat the parameterssatisfy the preconditionsof m and B is
committed to ensurethat the postcondition of m will be met and the class
invariant of B is presened. Moreover, Ei®el requires global program anal-
ysis to ensurecorrectness,which has the useful byproduct that all current
Ei®elcompilerssupport incremerial compilation; hencerecompilation times
remain in relation to the changesmade. Finally, Ei®eldoesnot have corou-
tines, but a languageextensionfor an object-oriented equivalert of coroutines
has beenproposedby Meyer [Mey97].

When we came to the conclusionthat in C++, we could not improve
memory-managemenwhile maintaining the readability and extendibility of
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the sourcecode, we madean e®ortto port the path-decompsition algorithm
to Ei®el,but dueto time constrairts, this project wasevertually suspended|
the lack of a data structure library like LEDA could not be compensatedfor
by a one-mane®ort.
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AppendixA

Noteson the Softvare

We pursuedse\eral linesof developmert. In SectionA.1 we descrike our tools
for graph generation,which draw on the techniquespresened in Section5.1.
Using the C++ languageand the LEDA library [MNSU98], we implemerted
the [ACP87] tree-decompsition algorithm, the generictree-automatontech-
nigue for solving problemson graphsof boundedtreewidth, and asinstances
of the latter, algorithms for CoLoRING and computing path decompsitions.
Implemertation noteson theseprogramsaregivenin SectionA.2. The source
code, somel12,000lines of code, is included on electronic mediawith all ox-

cial copies;it is available aswell on the Internet at

http://www.mpi-sb.mpg.de/ roehrig/dipl

The un nished port to the Ei®elprogramminglanguage(3,500lines of code)
is available on request.

A.1 Graph Utilities

We neededutilities to generateand manipulate a large number of graphsin
a scriptable ervironment. For this purpose,we createdthe \grut" padkageof
commandline graph utilities. To ensureinteroperability with the \graphlet"

interactive graph editor [Him96] and LEDA, we chosethe GML Te format
[Him97] to store graphs. All programsin the grut packageful Il a narrow
purpose, sud as outputting a random tree or annotating a graph with a
layout; they take their parametersfrom the commandline, read input from
the standard input and write output to the standard output. As an extension
to GML, they all maintain a log of changesmade to a graph, so that the
genesioftest casesanalways be determined. We reproduceherethe README
‘Te from the sourcecode.
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From: Hein Roehrig <hein@acm.org>
Time-stamp: "1998-09-23 11:20:29 roehrig"

COPYRIGHT

grut - GRaph UTilities
Copyright (C) 1998 Hein Roehrig

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or (at
your option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software

Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
USA

INTRODUCTION
This is a snapshot of the C++ and Perl command line graph utilities
developed for my master’s thesis. The underlying simple graph format

is GML, as described in

http://www.fmi.uni-passau.de/
archive/archive.theory/ftp/graphlet/GML.ps.gz

As an extension to GML, the utilities maintain a history of the
changes made to graph.

INSTALLATION

- Prequisites: GNU make, gcc 2.8 or egcs, perl 5. Optionally autoconf,
automake and libtool. LEDA is not used.

- in the following, the directory of this file will be referred to as
$srcdir.

- make a separate compilation directory, now referred to as $compdir

- configure the package
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cd $compdir
$srcdir/configure --disable-shared

If you want to use a different C/C++ compiler, do the following:

CC=/opt/egcs-1.0.1/bin/gcc CXX=/opt/egcs-1.0.1/bin/c++
$srcdir/configure --disable-shared

- cd $compdir; make

for debugging :
make CXXFLAGS="-pipe -g -Wall"

for profiling:
make CXXFLAGS="-pipe -0 -fno-inline -DNDEBUG -pg -Wall"

for production:
make CXXFLAGS="-pipe -03 -DNDEBUG -Wall"

RUNNING

A1l programs take their input from stdin and write the output to
stdout. Errors and other messages are sent to stderr. The programs
take a "-v" switch to increase verboseness, and those using random
numbers take a "-S integer" switch to define the seed. Other options
depend on the program and are given by running the program with the
"--help" flag (you are invited to have a look at the source code as
well).

Generation:
makepath generate a path of given length
makecactus generate a cactus of given size

rtree generate random trees

Modification:

tree2ktree generate a k-tree from a tree at random
thinout randomly delete edges

permute randomly permute nodes

id2label set the node labels to the node ids
label2id set the node ids from the node labels

Layout:
layout3d 3D spring embedder
gml2vrml convert a GML graph with 3D layout to VRML

Other:
graphstat give statistics of a graph
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A.2 Tree Decomposition and Path Decomposition

All C++ software for computing and verifying tree decompsitions and path
decompsitionsis cortained in the \tdecomp" padkage. An overview of the
distribution and installation instructions are cortained in the README e,
which follows.

From: Hein Roehrig <hein®acm.org>
Time-stamp: "1998-09-23 11:21:37 roehrig"

COPYRIGHT

tdecomp - Programs for Tree and Path Decomposition
Copyright (C) 1998 Hein Roehrig

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or (at
your option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
USA

INTRODUCTION

This is a snapshot of the C++ tree decomposition and path
decomposition programs developed for my master’s thesis. At some point
during development, I came to the conclusion that using C++ was not a
good idea since it has serious deficiencies such as missing garbage
collection. Unfortunately, I did not get around to re-implement
everything in Eiffel; however, the present code proves rather well
that the Bodlaender-Kloks algorithm is impractical.

If you would like to look at the source, the interesting parts are in
the following files:

tautomat.h contains the generic algorithm for solving problems using a
tree decomposition.

iseq.h, iseq.cc contain the code dealing with T-sequences.
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pdc.h contains the combination algorithms for path decomposition
coloring.cc contains the combination algorithms for k-COLORING.

tdecompl.cc contains the the n”(k+2) tree decomposition algorithm by
Arnborg, Corneil and Proskurowski.

The primary benchmarking tools are
pdcpathG: scheduler for series of benchmarks

cfman: configuration manager for executing the same test suite on
multiple variations of the same algorithm

ppac: measures the resource usage (elapsed wall clock time, CPU
cycles, memory consumption)

INSTALLATION

- Prequisites: GNU make, LEDA 3.7, gcc 2.8 or egcs. Optionally: perl
5, autoconf, automake and my grut graph utilities. The sources can
be back-ported to LEDA 3.5 and 3.6 without much work; however,
earlier versions of gcc and most other C++ compilers don’t do
because they do not support features like member templates. Note
also that Quantify up to version 4.2 does not work with gcc 2.8 (I
had to learn it the hard way...).

- in the following, the directory of this file will be referred to as
$srcdir. The location of LEDA will be referred to as $ledadir.

- make a separate compilation directory, now referred as $compdir
- configure the package

cd $compdir
$srcdir/configure --with-leda=$ledadir

if LEDA is installed in $ledadir/include and $ledadir/lib, or

$srcdir/configure --with-leda-include=/LEDA/INSTALL/incl
—--with-leda-1ib=/LEDA/INSTALL/solaris/g++/1lib

If you want to use a different C/C++ compiler, do the following:

CC=/opt/egcs-1.0.1/bin/gcc CXX=/opt/egcs-1.0.1/bin/c++
$srcdir/configure --with-leda=$ledadir

- cd $compdir; make

for debugging :
make CXXFLAGS="-pipe -g -Wall -Wno-reorder"
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for profiling:
make CXXFLAGS="-pipe -0 -fno-inline -DNDEBUG
-DLEDA_CHECKING_OFF -pg -Wall -Wno-reorder"

for production:
make CXXFLAGS="-pipe -03 -DNDEBUG
-DLEDA_CHECKING_OFF -Wall -Wno-reorder"

- optionally (may need huge amounts of memory/time):

make check

RUNNING

- Note: numbers referring to vertices in the output are the values
from the GML "id" field.

- At the beginning of the individual source files, debugging and other
options can be set via preprocessor directives

- For running the programs, the LD_LIBRARY_PATH variable probably
needs to point to the location of the LEDA DLLs. For the test and
benchmark scripts, you should also set TIMECMD and srcdir. Of
course, all shell variables need to be exported to the environment.

- A1l programs dump core on errors and on ~C. Therefore you should
consider to set ulimit -cO to switch off core dumps.

- All programs write their output to stdout and diagnostic messages to
stderr. All programs take the "-v" switch to increase verboseness.

- The tdecomp and the pdecomp programs either compute or verify tree
decompositions/path decompositions. Verify mode is specified with
the "-V" switch; without this switch, computation mode is selected.
For computation and optionally for verification, a "-k integer"
switch can be given to indicate the required width of the
decomposition.

tdecomp -vk2 graphl.gml > graphl-tdc.gml
computes a tree decomposition of width 2 of graph 1, with lots of
information during the computation, and with the output tree
decomposition written to graphl-tdc.gml.

pdecomp -vk3 graphl.gml graphl-tdc.gml > graphl-pdc.gml
computes a width 3 path decomposition of graphl.gml using the tree

decomposition graphl-tdc.gml, and write the output to
graphl-pdc.gml.
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tdecomp -vVk2 graphl.gml graphl-tdc.gml
verbosely verifies the tree decomposition, and

pdecomp -vVk3 graphl.gml graphl-pdc.gml
verifies the path decomposition.

- The coloring program works similarly, except that the output
consists of a coloring and the -k parameter indicates the number of
permitted colors.

- The file format for tree decompositions is as follows: The tree is
written out as a GML graph, and nodes of the tree have a GML keyword
"bag" of type "list", in which the graph vertices in the bag of that
tree node are given. E.g.

graph [
directed O
node [ id O bag [ node 7 node 100 ] ]

node [ id 1 bag [ node 4 node 7 ] 1]
node [ id 2 bag [ node 4 ] 1]

edge [ source 0 target 1 ]

edge [ source 1 target 2 ]

]

would be a (width 1) tree decomposition of graph

graph [

directed O

node [ id 4 ]

node [ id 7 ]

node [ id 100 ]

edge [ source 4 target 7 ]

edge [ source 7 target 100 ]
]

- For benchmarking, perl and grut are needed. The test cases are
generated using make* scripts and executed using the corresponding
pdc* scripts. If you are reading this not much later than summer
1998, beware that the dimensions of the test cases are chosen to go
to the limit of the largest machine I had access to.

GRAPHS

test cases for tree decomposition verification
g000.gml t000.gml
g001.gml t001.gml
g002.gml t002.gml
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test cases for tree decomposition computation

g003.gml t003.
g004.gml t004.
.gml
.gml
g007.gml t007.
g008.gml t008.
.gml
.gml
.gml

g005.gml t005
g006.gml t006

g009.gml t009
g010.gml t010
g019.gml t019

gml
gml

gml
gml

test cases for coloring (tree automaton)

g003.gml t003.
g011.gml tO011.
g011l.gml t012.

gml
gml
gml

test cases for path decomposition

g013.gml t013.
.gml
.gml
.gml
g023.gml t023.
.gml
.gml
.gml
g038.gml t038.

g016.gml t016
g020.gml t020
g022.gml t022

g025.gml t025
g026.gml t026
g032.gml t032

misc graphs

g015.gml t015

gml

gml

gml

.gml

handcrafted, 6 nodes, pathwidth 2

from path20, width 2, not thinned out

pathwidth 3, treewidth 3, 11 nodes

tree of 5 nodes in Y form

cycle of 5 nodes with two "dangling" nodes

based on g016.gml, with 1/4 of the edges removed
graph consisting of 4 stacked triangles, tw 2, pw 3
test case for single split error in computing results
for profiling, path 128, width 2, 25} deleted

generated, treewidth 4
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