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Abstract

Graphsof small treewidth resemble a tree in a certain (precise)sense.Many
computationally hard graph problemscan be solved e±ciently on graphsof
small treewidth usinga \tree decomposition," which represents the construc-
tiv easpect of treewidth. However, computing minimum-width tree decompo-
sitions is NP-hard in general,but for ¯xed treewidth, there exist algorithms
with polynomial running time.

In order to evaluate the practical usability of tree-decomposition algo-
rithms for graphsof arbitrary treewidth, we have implemented several fun-
damental algorithms related to computing tree decompositions. We present
the theory behind solving graph problems using tree decompositions and
show how it can be applied in practice to compute \path decompositions."
Then we give a survey of the tree-decomposition algorithms consideredand
discusstheir practical value on the basisof benchmarks.

Test graphs were produced using a suite of graph-generatingprograms
that we developed as part of this thesis. Our experiments indicate that the
algorithms for graphsof unrestrictedtreewidth arenot viable for input graphs
with treewidth beyond the scopeof present special-purposealgorithms, which
exist for treewidth up to four.
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Chapter1

Introduction

\How much does a given graph resemble a tree?" | this question has led
to the notion of the treewidth of a graph and to the related notion of tree
decompositions, which represent the constructive content of the treewidth
measureof a given graph. In this work, we describe and analyzeapproaches
to derive small tree decompositions of arbitrary graphs.

Treesare very simple graphs: many graph problems can be solved ef-
¯ciently on trees, becausethese problems often require only a bottom-up
or top-town traversal of the nodes with constant work at each node. Ask-
ing how similar an arbitrary graph is to a tree is motivated by the hope of
¯nding e±cient algorithms that exploit the \tree-lik e" structure. Consider
for examplethe IndependentSet problem: given a graph G = (V,E) and
an integer `, is there a vertex set W ⊆ V of size ` such that no two ver-
tices in W are adjacent? This problem is NP-complete on generalgraphs
[Kar72], but on a tree T = (V,E), we can solve it in linear time in one
bottom-up pass:We choosean arbitrary r ∈ V asroot and let Tx = (Vx, Ex)

root r

x

Tx

denote the maximal subtree of T with root x ∈ V ;
proceedingfrom the leavesup to the root, wemark each
node x with a pair of integers(i, j), where i is the size
of the largest independent set in Tx that includesx and
j is the sizeof the largestindependent set that doesnot
includex. Leavesget labeled(1,0); for inner nodes,we
caneasilycalculate(i, j) from the corresponding values
of the children (seeFigure 1): The largest independent set with x in Tx is
the union of {x} and largest independent sets in the subtreesrooted at the
children of x so that each independent set in a subtreedoesnot include the
root of the subtree. The largest independent set without x in Tx is the union
of the largest independent sets in the subtreesrooted at the children of x;
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(1,0)

(6,7)

Figure 1: A tree with node labels (i, j) indicating the size of the largest
independent set in the subtreewith the root (i), and without it (j).

if for the root of T , i or j is greater than `, then the algorithm accepts,
otherwiseit rejects.

For computing information about its subtree Tx, each node x usesthe
information from its children. Can this dynamic-programmingtechnique be
extendedto graphs that in someway look like a tree? The graph below on
the right is derived from the tree on the left by replacing each node with a
triangle of verticessothat the triangles of adjacent nodessharean edge(and
no edgeis sharedmore than once):

We now explain how to extend the algorithm to solve IndependentSet on
\tree-lik e" graphsderived by the \triangle construction" above. In addition
to a graph G = (V,E), the input alsocomprisesthe instructions for building
G, namelya treeT = (X,F ) anda mappingB : x 7→ {u, v, w} that associates
tree nodesx with trianglesu, v, w in the graphG. The computation proceeds
bottom-up in T (with a root chosenarbitrarily), and nodesx ∈ X get labeled
with information about certain subgraphsGx of G. Informally speaking,Gx

is the subgraphcorresponding to Tx in the tree:
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chosenroot rx

Tx

Gx

More precisely, for leavesx, Gx is just the triangle B(x), and for inner tree
nodes, the graph Gx results from joining the graphs Gy corresponding to
children y of x to the triangle B(x). For the root r, Gr is the entire graph.
Information about large independent sets in Gx is stored with x, just like
the pair (i, j) for Tx in the caseof a tree. Note that for each child y, the
subgraphGy sharesexactly two verticeswith B(x). Independent setsof Gx

can be restricted to independent sets of Gy; the restriction of the largest
independent set of Gx will be an independent set of Gy that is the largest
onesatisfying the set-membership status of the two boundary vertices. It is
thereforesu±cient to label nodesx with three integers(i1, i2, i3) indicating
the sizesof the largest independent set in Gx when none, the ¯rst or the
secondboundary vertex must be in the independent set. Finally, if and only
if at the root node, the maximum of the integersis at least `, we know that
there is an independent set of the required size`.

We have thereforejust extendeda dynamic-programmingalgorithm solv-
ing a graph problem on trees to a classof somewhatmore complex graphs,
maintaining the linear running time. In doing so, we made a distinction
betweenthe graph G and its \underlying" tree T ; constant-time operations
at nodesx of the tree producedinformation about partial solutions on sub-
graphs Gx corresponding to subtreesTx with root x. Rather than storing
completesolutions, we kept only characteristic data|the sizeof the largest
independent set for each con¯guration of included boundary vertices.

The outlined approach can be applied to a considerably larger classof
graphsand problems. Graphs to which our algorithm can be adaptedare

• graphsthat allow one triangle edgeto be sharedby several children:

x

In this case,there is no longer a one-to-onecorrespondencebetween
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the graph and the tree. For instance,the graph above and the oneon
the left below both originate from the tree on the right.

x
x

Therefore for each tree node, we need to record where in the parent
triangle the two new edgesof the graph are connected.The extension
of the algorithm itself is straightforward; speci¯cally, the linear running
time is preserved.

• graphsresulting from \triangle graphs" by edgedeletion:

If the edgebetween two boundary vertices is missing, they can both
be part of a large independent set; hencewe needto extend the triples
(i1, i2, i3) at tree nodesx to quadruples(i1, i2, i3, i4) wherei4 indicates
the sizeof the largest independent set in Gx containing both boundary
vertices. After edgedeletion, the tree from which the graph was con-
structed is no longerobvious and must thereforebe suppliedaspart of
the input.

• graphs constructed by using = K4 or = K5 or larger complete
graphsKk+1 instead of triangles:

If we useKk+1, there are k vertices on the boundary betweenparent
and child, that is, parent and child overlap on k vertices. For each
of the 2k subsetsS of those k vertices, we need to record the size of
the largest independent set containing S. It should not come as a
surprise that k contributes an exponential factor to the running time
of our algorithm|an y graph with n = k + 1 vertices is a subgraph
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of Kn = Kk+1 and the IndependentSet problem is NP-completeon
generalgraphs.

The classof graphsat which we arrive by applying all three generalizations,
that is, by choosinga k, not restricting the degreeof tree nodesand taking
the closure with respect to edgedeletion, will be de¯ned later as \partial
k-trees" [Ros74, ACP87] or \graphs of treewidth at most k" [RS83, RS86].
The treewidth k will be taken as a measureof how much a graph resembles
a tree. We support this claim with the following remarks:

• Collectionsof trees,called forests,are perfectly \tree-lik e." They have
treewidth k = 1.

• With growing k, we employ larger and larger complete graphs Kk+1

in building graphs of treewidth k. These complete graphs are very
much di®erent from trees. Moreover, if we look at graphs of growing
treewidth (laid out using a spring-embeddermethod), they intuitiv ely
look lessand lesslike trees:

k = 1 k = 2

k = 3 k = 4

• The running time of our algorithm for IndependentSet dependsex-
ponentially on k, thus being linear for trees and graphs of constant
treewidth and exponential for generalgraphs. For generalgraphs, a
tight bound on k is n − 1 as it can be shown that Kn cannot be con-
structed from a tree using Km with m < n (this is a consequenceof
Lemma 11 in the next chapter).
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Why do we needto supply the underlying tree with the input to our algo-
rithm? If we delete edgesgradually from \triangle graphs," the underlying
tree disappearsfrom our perceptionwhen we lay out the graph in a natural
way (again using a spring-embedder layout method):

Squeezingcycles will give us potential embeddings of a partial \triangle
graph" into a completeone:

= ↪→ =

For generalk-treeshowever, the situation appearsto be much moredi±cult.
What tree structure we have at the start of the following examplegets lost
by removing edges(k = 3):

complete −20%edges −40%edges

Let us now take a step back and considerhow the observations about re-
semblanceof graphsto treesand its algorithmic use¯t into the \big picture."
Clearly, most graphs do not resemble trees|th us talking about algorithms
for \graphs of boundedtreewidth" meansto talk about algorithms that do
not work on all graphs,but only on a subsetof generalgraphs. Why should
weput up with such a limitation? Our exampleproblem,IndependentSet,
is NP-hard and thereforeis unlikely to havean e±cient, i.e., polynomial-time,
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algorithm. Two approacheso®erremedy. First, we may decideto settle for
the second-best solution and seekapproximation algorithms. Second,and
this is the route we took in solving IndependentSet on partial k-trees,
we can restrict the set of permissibleinputs so that the restricted problem
can be e±ciently solved. Obviously, we want to make this restricted input
classas large aspossiblewhile maintaining a small running time. Preferably
the restriction should be in a certain way natural, parameterizedto form an
ascendingchainR1 ⊂ R2 ⊂ . . . of moreand moregeneralinputs (so that for
every input G, there is an index i with G ∈ Ri) and applicable to a general
classof problems. The classesof graphsof treewidth at most k meetall these
goals. Keepingk constant, we have a linear-time algorithm for the Indepen-

dentSet problem, and by choosingk appropriately large, we cover a rather
large classof graphs, including for example series-parallelgraphs (k = 2)
[Bod93] and `-outerplanar graphs(k = 3`− 1) [Bod93], but also the control
°ow graph of imperative programming languages[Tho97]. Graphs are ubiq-
uitous combinatorial structures, and the dynamic-programming technique
for solving problemsusing a tree decomposition extends to a large classof
problems;Courcelle[Cou90, Bod93] pioneeredin formulating logical systems
in which each proposition about a graph can be checked e±ciently on graphs
of boundedtreewidth.

However, there are drawbacks and issuesthat we have not yet addressed.
We already noted that letting k grow with the graph size, i.e., k = |V | − 1,
leadsto a classthat encompassesall graphsand to an exponential-time algo-
rithm. In general,the time complexity of algorithms operating on graphsof
treewidth k will depend at least exponentially on k, sincefor k = n− 1 they
reduceto exhaustive search. Worse, the problem of determining treewidth
is NP-hard [ACP87], and thus computing minimum-width tree decomposi-
tions of arbitrary graphs seemsto be out of question. Still, computing the
minimum-width tree decomposition of a graph with a known bound k on
the treewidth is possible,even in time linear in |V |, but, again, exponential
in k [Bod96a]. Furthermore, the problem of computing tree decompositions
exhibits a property calledfixed-parameter tractability [DF95]|there exist al-
gorithms with running time polynomial (even linear) in n wherethe degreeof
the polynomial is independent of k, and k canonly in°uencethe \constants."

From a theoretical point of view, we might be quite satis¯ed with these
results. After all, we cannot really expect much more from NP-hard prob-
lems. On the other hand, the practical valueof theseresultshasnot yet been
investigated. They de¯nitely merit an assessment of practicality, becausethe
problemssolvable e±ciently on graphsof boundedtreewidth have plenty of
real-world applications, and someapplications provably produce only prob-
lem instanceswith graphs of bounded treewidth. The goal of this master's
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thesis is to shedlight on the question of practical usability of generaltree-
decomposition techniquesand algorithms for computing tree decompositions.
To this end,Chapter 2 focuseson the dynamic-programmingtechniqueusing
tree decompositions; in Chapter 3, we discussa major application of the ap-
proach, namely how to compute \path decompositions." Chapter 4 presents
the candidatesfor practical tree-decomposition algorithms,amongthem Bod-
laender'slinear-time algorithm. Evaluating implementations meansproduc-
ing and executingbenchmarks; in Chapter 5, we describe methods to create
test inputs and show how our implementation of the tree-decomposition al-
gorithm by Arnborg, Corneil, and Proskurowski [ACP87] performson them.
In Chapter 6, we present our conclusionson the practicality of the various
tree-decomposition algorithms and give a short critique of our development
environment. Further information on the software can be found in the ap-
pendix.
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Chapter2

UsingTreeDecompositions

2.1 Preliminaries

In this section, we will give fundamental de¯nitions and properties related
to tree decomposition; most of these are drawn from [BK96] and [Bod97],
others follow [BH98]. Graphs will always be undirected, ¯nite, simple, and
without loops. Somebasicnotation is ¯xed in the following de¯nition:

De¯nition 1 (Graphs and Trees).

(1) G = (V,E) is called a graph if V is a ¯nite set of vertices and E is
a subsetof the set {{u, v} : u, v ∈ V and u 6= v} of unorderedpairs
{u, v} from V , which are callededges and which are sometimeswritten
as (u, v).

(2) For u, v ∈ V , wecall u and v adjacent if thereexistsan edge{u, v} ∈ E.
We also say that u is a neighbor of v. The degree of a vertex is the
number of its neighbors.

(3) A graph G0 = (V 0, E0) is called a subgraph of G if V 0⊆ V and E0⊆ E.
G is alsocalled a supergraph of G0.

(4) For V 0⊆ V , the subgraph G[V 0] induced by V 0 is the subgraphwith the
vertex set V 0 and the edgesE0 = E ∩ {{u, v} : u, v ∈ V 0 and u 6= v}.

(5) A graph G = (V,E) is complete, if there is an edgebetweenevery pair
of vertices. A completesubgraphwith k verticesis called a k-clique.

(6) A path in G is a subgraphP = (V 0, E0) of G whereV 0 can be written
asV 0 = {v1, . . . , vp} so that E0 = {{vi, vi+1} : 1 ≤ i < p}. We require
that V 0 6= ∅ and de¯ne the length of P as p − 1. P is called a path
between u and v if v1 = u and vp = v; note that in our de¯nition, a
path doesnot have a distinguisheddirection.
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(7) A graph G is connected, if there exists a path betweenany two of its
vertices;a connected component of G is a maximal connectedsubgraph
of G.

(8) A tree T = (X,F ) is a connectedgraph with |F | = |X| − 1. A subtree
is a connectedsubgraphof a tree.

(9) A rooted tree T = (X,F, r) is a tree with a root r ∈ X. The depth of
a node x ∈ X in a rooted tree is the length of a shortest path from x
to r. The neighbors of x ∈ X with greaterdepth than x are called the
children of x.

(10) The root of a subtreeT 0 = (X0, F 0) of a rooted tree T = (X,F, r) is
the node x ∈ X0 with the smallestdepth. The subtree Tx rooted at x
of a rooted tree T = (X,F, r) is the largest subtreeof T with root x.

Lemma 2. In a tree, there is exactly one path between any two vertices.
Moreover, between two disjoint subtreesT1 = (V1, E1) and T2 = (V2, E2),
there is exactly onepath P = (V 0, E0) with V 0 = {v1, . . . , vp} sothat V1∩V 0 =
{v1} and V2 ∩ V 0 = {vp} (and E0 = {{vi, vi+1} : 1≤ i < p}). 2

Unlessotherwisenoted, for G = (V,E), we setn = |V |. When talking about
a graph G = (V,E) and an associated tree T = (X,F ), the word vertex
will be reserved for elements of V whereasnode or tree node will be usedfor
elements of X.

To make use of the \tree structure" of the input graph G, the Inde-

pendentSet algorithm presented in the introduction needsto know how G
derivesfrom a tree. A \tree decomposition" represents this information in a
format suitable for algorithms exploiting the boundedtreewidth. Recall the
strategy we used: Proceedingin the underlying tree from the leaves up to
the root, we computedat each tree nodex the sizesof large independent sets
in the subgraphGx corresponding to the tree Tx rooted at x. In addition
to the sizesproducedby the children of x, thesesizesdependedonly on the
part of Gx in which solutions for Gy of children y of x could intersect. Thus
the part of Gx relevant to the computation at x is precisely the complete
graph Kk+1 (or what remainsof it after edgedeletion) we put for x during
the construction of G; a mapping B from x to the corresponding \triangle"
Kk+1 then is what we needin the generalcaseaswell: A mapping from tree
nodesx to the corresponding k + 1 vertices of G or, equivalently, for each
tree node x a bag Bx ⊆ V . This leadsto the following de¯nition:

De¯nition 3 (Tree Decomposition). A tree decomposition of an undirected
graph G = (V,E) is a tree T = (X,F ) with bagsBx ⊆ V for each x ∈ X
such that

15



(1)
S

x2X Bx = V

(2) for all graph edges(u, v) ∈ E, there is a tree node x ∈ X such that
u ∈ Bx and v ∈ Bx

(3) for all tree nodesx, y, z ∈ X: if y is on the path from x to z in T , then
Bx ∩Bz ⊆ By.

If T is a rooted tree, we call (T, {Bx}x2X) a rooted tree decomposition.

Someexplanationsof the conditions are in order. (1) is clear, sincewe want
to cover all vertices of the graph. Each edgemust be consideredat some
point during the computation, hencecondition (2). Condition (3) enforcesa
locality constraint; we may look at (3) in the following way:

Proposition 4. Condition (3) in the de¯nition of tree decompositions can be
replacedby

(30) for every vertex v ∈ V , the nodescorresponding to bagscontaining v
form a connectedcomponent of T .

We will assumethat for each bag Bx ⊆ V , the corresponding tree node x
is known, which allows us to identify tree nodesx and their bagsBx; the
matching picture of a tree decomposition then consistsof a tree with bagsas
nodeswhereoverlapping bagssharean ancestorcontaining the overlap.

Proof. Considerthe subgraphT (v) of T inducedby the bagscontaining v ∈
V . If T (v) is not connected,there is a path betweentwo of its components,
which hasa tree nodey that doesnot contain v, i.e., v 6∈ By. This contradicts
(3), henceT (v) must be connected.

Conversely, if every vertex occurs in a connectedcomponent of T , then
for y on the path from x to z, By contains all v for which T (v) contains both
x and z. ThereforeBy ⊇ Bx ∩Bz. 2

De¯nition 5 (Treewidth). The width of a tree decomposition is

max
x2X

|Bx| − 1.

The treewidth of a graph is the minimum width of all its tree decompositions.

As desired,treesand forestshavetreewidth 1|just put every pair of adjacent
verticesin a bag of size2 and make each new bag (but the ¯rst) adjacent to
an older bag with which it sharesa vertex or to any bag, if there is no older
bag with which it sharesa vertex.

The notion of tree decomposition arose in the context of analyzing a
graph. If we take a constructive approach, as we did in the introduction
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when we consideredextensionsto the triangle construction, we arrive at
the conceptof k-trees,which by Proposition 8 below are maximal graphsof
treewidth k.

De¯nition 6 (k -Trees). The class of (total) k-trees is characterized induc-
tiv ely as follows:

(1) The completegraph with k + 1 vertices,Kk+1, is a k-tree.

(2) If G = (V,E) is a k-tree and B ⊆ V is a k-clique in G, then the graph

G0 = (V _∪{v}, E ∪ {(u, v) : u ∈ B})

that results from adding a new vertex v adjacent to all verticesof the
basis B of v, is a k-tree.

(3) Only the graphsde¯ned by (1) and (2) are k-trees.

If G = (V,E) is a k-tree, then any graph G0 = (V,E0) with the samevertices
and a subsetof edgesE0⊆ E is a partial k-tree.

Adding a new vertex yields a new (k + 1)-clique; if we put each of theseinto
a bag, thesebags¯t together like a tree. \Thinning out" k-trees yields all
possibletreesof treewidth k:

Proposition 7. A graph G = (V,E) is a partial k-tree if and only if it has a
tree decomposition of width at most k.

Proof. A k-tree has a tree decomposition of width k: The ¯rst (k + 1)-
clique makes up a bag; whenever we add a vertex v, we put the resulting
(k + 1)-clique into a new bag and connectthis bag to any existing bag that
contains the k-clique B to which v was made adjacent. This yields a tree
decomposition, sincethe bagsform a tree, all verticesand edgesare covered,
and verticesoccur in connectedcomponents of the tree. Moreover, this tree
decomposition has bagsof sizek + 1 and thus width k. A partial k-tree G
is the result of deleting a number of edgesfrom somek-tree G0, thereforea
tree decomposition for G0 is alsoa tree decomposition for G.

Given a graph G = (V,E) and a tree decomposition of width at most
k, we rewrite the tree decomposition so that we can use it to construct a
supergraph G0 = (V,E ∪ E0) that is a k-tree. Our goal is to arrive at a
tree decomposition in which each bag hassizek + 1 and whereadjacent bags
di®er in exactly two vertices. Given such a tree decomposition, we turn the
bags into (k + 1)-cliquesby inserting new edgesand thus get a k-tree: we
can construct the augmented graph starting from any bag and performing a
depth-¯rst traversalof the tree, adding for each non-visited neighbor its new

17



vertex to the graph and making the new vertex adjacent to a k-clique in the
current bag.

Any tree decomposition can be adjusted to the required form, maintain-
ing its width: Start by contracting adjacent bagsthat areequalor whereone
is contained within the other. Choosearbitrarily a root of the tree decompo-
sition, and complement bagswith lessthan k + 1 verticeswith verticesfrom
their parent bags. Now adjacent bagsdi®erin at least two verticesand their
sizeis k + 1. Finally, insert new bagsbetweenbagsthat di®er in more that
two vertices. 2

In the following sense,a k-tree is a maximal graph of treewidth k:

Proposition 8. If G = (V,E) is a k-tree, then the graphG0 = (V,E _∪{(u, v)}),
which is obtained from G by adding a new edge(u, v), has treewidth k + 1.

Proof. A k-tree with n = |V | verticeshas
¡

k+1
2

¢
+ (n− (k+ 1))k = nk−

¡
k+1
2

¢

edges.If G0 had treewidth k, it would be a subgraphof somek-tree. This is
impossible,becauseG0 has |E _∪{(u, v)}| = nk −

¡
k+1
2

¢
+ 1 edges.However, a

width-k tree decomposition of G can be turned into a tree decomposition of
G0 of width k + 1 by adding vertex u to all bags. 2

Further fundamental properties of tree decompositions are presented in the
following lemmas. An immediate consequenceof the construction in the
proof of Proposition 7 is Lemma 9:

Lemma 9. Every graph G = (V,E) has a tree decomposition of size £( n),
and any larger tree decomposition can be reducedto linear sizein time pro-
portional to the sizeof the given tree decomposition. 2

However, ¯nding minimum-width tree decompositions of generalgraphs is
NP-hard. The Treewidth problemtakesasinput a graphG and an integer
k and decideswhether G has treewidth at most k. Arnborg, Corneil, and
Proskurowski [ACP87] proved

Theorem 10. Treewidth is NP-complete. 2

Lemma 11 and 12 below give conditions under which certain vertices are
guaranteed to sharea bag; Lemma 11 in particular is an important tool for
reasoningabout tree decompositions.

Lemma 11. Let K be a clique of G. In any tree decomposition of G, there is
a bag that contains all verticesof K.
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Proof. Fix a tree decomposition (T = (X,F ), {Bx}) of G. For any vertex v
of G, the subgraphT (v) of tree T induced by the bagscontaining v is (by
Proposition 4) a subtreeof T . We needto prove that the intersection of all
T (v), for v ∈ K, is non-empty. Choosingan arbitrary nodeof T asroot turns
every subtreeT (v) into a rooted subtreeand we can talk of the depth of a
node in T . Let v0 ∈ K be a vertex whosesubtreeT (v0) has the root with
the greatestdepth among the roots of subtreesT (v), v ∈ K. Becausev0 is
adjacent to all u ∈ K, T (v0) and T (u) overlap, and becauseT (v0) has the
deepest root, they must overlap at this very root. This holds for all u ∈ K,
thereforethe bagcorresponding to the root of T (v0) contains all verticesfrom
K. 2

Lemma 12. Let G0 = (U _∪W,E0) be a complete bipartite subgraph of G =
(V,E), i.e., E0 = {(u,w) : u ∈ U,w ∈ W} ⊆ E. Then in any tree decompo-
sition of G, at least oneof U and W will be contained in onebag.

Proof. We usethe notation from the previousproof. For u ∈ U and w ∈ W ,
T (u) and T (w) overlap becauseof the edge(u,w). Assumethere areu1, u2 ∈
U with T (u1) andT (u2) disjoint. Let P be the path in T that connectsT (u1)
and T (u2). For any w ∈ W , T (w) must have non-empty intersection both
with T (u1) and T (u2), henceit must be a supergraph of P . Consequently,
all T (w) overlap on P , so there is a bag containing all w ∈W . 2

2.2 The Generic Tree-Automaton Technique

We will now present and analyze a \generic" algorithm for determining a
graph property (such asthe existenceof a large independent set) usinga tree
decomposition. The presented form of the framework is due to Bodlaender
and Kloks [BK96, Bod97]; the IndependentSet problem of Chapter 1 will
serve again as an example.

Our setupis asfollows(seeFigure 2): As input, wearegivena graphG =
(V,E) and a tree decomposition (T = (X,F ), {Bx}x2X). We chooseany tree
node r as root of T , so that (T, {Bx}) becomesa rooted tree decomposition
and Tx can be de¯ned as the maximal subtreeof T rooted at x. Every node
x has a bag Bx, which we identify with the subgraphG[Bx] of G induced
by the vertices of Bx. Similarly, the subtree Tx gives rise to a vertex set,
the union of all bagsin Tx, which again is identi¯ed with the corresponding
subgraph:

De¯nition 13 (Subgraph at a Tree Node). For a graph G = (V,E), let (T =
(X,F, r), {Bx}x2X) be a rooted tree decomposition with root r ∈ X. The
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subgraph Gx at tree node x ∈ X is the subgraphof G inducedby the vertices
in the bagsof Tx = (Xx, Fx), i.e.,

Gx = G
h[

{By : y ∈ Xx}
i
.

Moving in T from the leaves up to the root, the corresponding subgraphs
Gx get larger and larger, up to Gr = G. At node x with children y1, . . . , yd,
the graph Gx is the union of Bx and Gy1 , . . . , Gyd

. The idea is to combine
solutions on each of the Gyi

to solutions on Gx, taking into account the
structure of Bx. For many graph problemsit is possibleto de¯ne the notion
of a partial solution on a subgraphGx as the restriction of a solution on G
to Gx so that

• the partial solutions on Gr = G include the actual solutions to the
problem, and

• partial solutions on each subgraphGyi
at the children yi of x can be

combined to partial solutions of the subgraphGx of their parent x.

For IndependentSet, we saw already that partial solutions are large in-
dependent sets; for HamiltonianCircuit|the problem of ¯nding a path
with adjacent endpoints that visits all vertices of G|a partial solution on
Gx is a set of disjoint paths in Gx that cover all verticesof Gx and have their
endpoints in Bx, or a completeHamiltonian circuit [Bod97]. The combina-
tion of partial solutions is facilitated by the property of tree decompositions
that only verticesin Bx can occur in more than onesubgraphGyi

:

Lemma 14. Let G = (V,E) be a graph with a rooted tree decomposition
(T = (X,F, r), {Bx}x2X). Let x be a tree node with children y1, . . . , yd. If
the vertex v ∈ V appears in both Gx and G \ Gx, or if v occurs in at least
two of the subgraphsGy1 , . . . Gyd

, then v must be in the bag Bx of node x.
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Conversely, if somevertex u ∈ V is contained in bagsBy and Bz, then it also
belongsto the bag of the lowest commonancestorof y and z. 2

Sowhencombining a partial solution on each Gyi
to partial solutionson Gx,

\in terference"betweenthe partial solutionson the Gyi
canonly occur via the

vertices in Bx. Of course,somepartial solutions on subgraphsGyi
may be

incompatible with each other and cannot be combined to a partial solution
on Gx. Yet if there is a partial solution on Gx, we require that it can be
constructed from partial solutions on the Gyi

. Sincewe proceedbottom-up
in the tree, we cannot know which partial solution at Gyi

can contribute to a
partial solution on Gx, thereforeat each node, we must be able to compute
all partial solutions.

What information about partial solutions is passedupwards in the tree?
Evento solvedecisionproblems,the combination stepneedsinformation with
constructive content, such as large independent setsas possibleparts of the
largest independent set. The tree will usually have £( n) nodes(Lemma 9),
henceto get a linear time bound, the algorithm may only perform constant
work at each node. Passingentire partial solutions|e.g., independent sets
in the subgraph|to parents is not an option, becausethere may be expo-
nentially many and producing all possiblecombinations would take expo-
nential time. Therefore,information passedalong the edgesof the tree must
be restricted to characteristics of partial solutions so that the number of
characteristics at any tree node is bounded by a polynomial. How can we
arrangethat? Returning to our example,we noted that independent setsof
subgraphsGyi

may interfere only on verticesfrom Bx (Lemma 14), therefore
characteristicsfor independent setsI in Gx are chosenaspairs (s, I0) with s
the sizeof the independent set and I0 = I ∩Bx the restriction of I to Bx. For
a tree decomposition of width k, there are at each node at most 2jBxj ≤ 2k+1

di®erent pairs (amongpairs with the sameset I0, we discardall but onewith
the greatestvalueof s). Sincewe considerk to be a ¯xed parameter,we have
at most 2k+1 = O(1) di®erent characteristics. Generally, whenwe have found
an O(logn)-size characteristic for a problem, we know that there is only a
polynomial number of characteristicsand hencea polynomial time algorithm
combining characteristicsfrom the leavesup to the root.

A characteristic should convey relevant information about a solution to
the problem restricted to a subgraph. As such, a characteristic at somenode
x indicates that there is a solution to the problem in Gx; characteristicsat
the root node r thus stand for solutions to the problem on the entire graph
Gr = G. To decide whether a characteristic exists at the root, we must
considerall combinations of characteristicsof the children of the root, which
in turn result from the characteristics of their respective children. So we
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proceedbottom-up in the tree computing all characteristicsat each node|
the full set of characteristics of the node|lest we miss somecharacteristic
that represents a necessarypart of every solution on the full graph.

Finding the right classof characteristics for a given problem is one half
of the problem of applying the generaltechnique. The other half is to de¯ne
how characteristicsare combined during the computation on the tree T . To
this end, the rooted tree decomposition is simpli¯ed so that there are only
four typesof tree nodes:

Start Nodes are leavesof the tree and their bagscontain only a singlevertex.

Intro duce Nodes have exactly one child. Their bag contains all the vertices
of the child's bag, plus a singlenewly \in troduced" vertex.

Forget Nodes have exactly one child. Their bag contains all the vertices of
the child's bag except for exactly one \forgotten" vertex.

Join Nodes have exactly two children, whosebagsmust contain exactly the
samevertices. The bag of a Join node contains the samevertices as
the bagsof the children.

In Section2.4, it will be shown how any tree composition canbe transformed
into this form without increasingits width and that the sizeof the resulting
tree decomposition remains linear in n. De¯ning the combination of char-
acteristics now meansto give four constant-time algorithms, one for each
type of node, which on input Bx and all characteristicsat the children of x
produceall characteristicsat node x. For IndependentSet,

• the algorithm for Start nodeswith vertex v returns the two character-
istics (1, {v}) and (0, ∅);

• for Introduce nodes x with new vertex v, we take all characteristics
(sy, I

0
y) of the single child y and passthem on, including a new char-

acteristic (sy + 1, I0
y ∪ {v}) if I0

y ∪ {v} is an independent set within Bx

(and hencewithin Gx).

• if x is a Forget node, we modify all the characteristics (sy, I
0) of the

child y to (sy, I
0\ {v});

• at Join nodes,weconsiderall combinationsof two characteristics(sy, I
0
y)

and (sz, I
0
z) of the children y and z, respectively, and check whether

I0
y = I0

z. In that case,a characteristic (sy + sz − |I0
y|, I0

y) is produced.

At tree nodesx, combination proceduresshould only produce characteris-
tics Cx for which a partial solution Sx on the subgraphGx exists|w e call
this the correctness of combination procedures.Moreover, combination algo-
rithms must also have the completeness property: At each tree node x, the
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characteristic Cx of every partial solution Sx on the subgraphGx must be
found. This is equivalent to requiring that at every tree node the full set of
characteristicsis computed. Correctnessand completenessareusually proved
by induction on the tree: The Start-node combination algorithm must yield
all characteristics of solutions in the single-vertex graph, and for the other
node types, it must be shown that the combination algorithms produce full
setsof characteristics from the full set of their children. For the Indepen-

dentSet combination proceduresabove, the correctnessand completeness
proofs are straightforward.

In the terms of ¯nite-state automata theory, the genericapproach can
be interpreted as the construction of a tree automaton A = (Q,§ , QI , δ)
(our notation follows [Sei90]). The set of statesQ is the set of all possible
characteristics; the ranked alphabet § = § 0 _∪§ 1 _∪§ 2 is the disjoint union of
tuples describingthe possiblenodesof a tree decomposition of width k,

§ 0 = {(Start , v) : v a vertex}
§ 1 = {(Introduce, G, v) : G graph with at most k + 1 vertices,with v} _∪

{(Forget, G, v) : G graph with at most k vertices,without v}
§ 2 = {(Join, G) : G graph with at most k + 1 vertices}

sothat tree decompositionsof width k (and the graph that they describe) can
beexpressedaswordsof the tree languageTΣ, which is inductively de¯ned as
containing all symbolsfrom § 0, all wordsa(t) with a ∈ § 1 and t alreadyin TΣ,
and all words a(t1, t2) wherea ∈ § 2 and t1, t2 ∈ TΣ. The transition relation
δ ⊆ S 2

d=0 Q × § d × Qd contains for Start nodesx with vertex v all tuples
(Cx, (Start , v)) where Cx is any characteristic at this node. For Introduce
nodes x with child y and introduced vertex v, δ has all transitions of the
form (Cx, (Introduce, Bx, v), Cy) forcharacteristicsCx that can be obtained
by inserting v into the child's characteristic Cy. Similarly, for Forget nodes
x with child y and forgotten vertex v, δ includesall (Cx, (Forget, Bx, v), Cy)
wherethe Forget node combination procedurebuilds Cx from Cy; Join nodes
x with children y and z lead to transitions (Cx, (Join, Bx), Cy, Cz) if Cy and
Cz can be mergedinto Cx, taking into account the structure of the subgraph
Bx.

Using the transition relation δ, we can de¯ne a tree-automatoncomputa-
tion on a word w ∈ TΣ asa labeling of the nodesof the tree w = a(t1, . . . , td)
(a ∈ § d, t1, . . . , td ∈ TΣ) with legaltransitions from δ. Wecall a such a label-
ing a q-computation if the root getslabeledwith a transition leadingto state
q; the languageacceptedby the tree automaton is the set of treesw ∈ TΣ

that have a q-computation for a q in the set of initial statesQI . Hence,by
setting QI to the set of Q of all possiblecharacteristics,our speci¯c tree au-
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tomaton A acceptsall tree decompositions for which a characteristic at the
root node can be found. The fact that the transitions are described by the
relation δ and not by a function introducesnondeterminism into the com-
putation of tree automata. The \recipe" for constructing algorithms in the
next section can be seenas an instanceof the well-known subsetconstruc-
tion, wherestates get replacedby setsof states and the transition between
setsof statescan be described by a function.

If there is any characteristic of a solution at the root of the tree decom-
position, we know that there is at least one solution to the problem on the
entire graph. At this point, wehavesolved the decisionproblem,but because
we have passedonly characteristicsof partial solutions insteadof the partial
solutions themselves, an additional e®ort is neededto actually construct a
solution: During the ¯rst phaseof the algorithm, we store with each charac-
teristic the characteristics that were combined to produce it. We selectan
arbitrary characteristic at the root node, and from the root to the leaves,we
selectat each node the characteristic that led to the chosencharacteristic at
the root. Similar to the original computation of all characteristics,we com-
bine characteristicsfrom the leavesup to the root, but this time, we discard
all non-selectedcharacteristicsand retain for each characteristic a complete
partial solution. At the root, we thus get one solution to the problem on
the whole graph. The running time remains linear, if we can combine the
partial solutions of the children in constant time at each tree node. This is
often possibletaking advantage of hints acquired in the combination of the
corresponding characteristicsand using \implicit" representations of partial
solutions that can be mergedand extendedin constant time, and converted
to full solutions in time linear in the sizeof the full solution.

2.3 A Recipe

The previoussectiondescribed the intuition behind the notions of the char-
acteristic of a partial solution and of the full set of characteristics. We now
construct a \recipe" for ¯tting problemsinto the tree-automatonframework
for e±ciently solving graph problemson graphsof boundedtreewidth. The
ingredients to solving decisionproblemsin linear time are

(1) the de¯nition of characteristicsof partial solutions,

(2) the proof that there is only a constant number of characteristics,

(3) four constant-time algorithms, onefor each of Start, Introduce,Forget,
and Join nodes,that take as input

• a tree node x of the algorithm's type,
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• the bag Bx and introducedor forgotten vertices,
• for each child yi of x, onecharacteristic Cyi

,

and return a set of characteristicsat x,

(4) proofs that for every characteristic Cx producedby a combination pro-
cedurefrom Cy1 , . . . , Cyd

, a partial solution Sx with characteristic Cx

exists at x whoserestrictions Syi
to Gyi

have characteristic Cyi
(this

is the correctnessproperty) and that for every partial solution Sx, the
combination procedurefor x ¯nds the characteristicCx of Sx, provided
that the combination procedureis called for all combinations of char-
acteristics from the full sets at children yi (this is the completeness
property).

Theorem 15. If the prerequisites(1){(4) are met for somedecisionproblem
P , there is a linear-time decisionalgorithm for P .

Proof. Moving from the leavesup to the root, we computecharacteristicsby
invoking the algorithms of ingredient (3) for each combination of children's
characteristics and taking the union of the resulting setsof characteristics.
By induction on the tree and by applying (4), these sets are full sets of
characteristics. If the full setCr at the root is non-empty, weaccept,otherwise
we reject. The running time is O(1) at each node, becausethe algorithms at
each node are invoked only a constant number of times. 2

Proceedingfrom decisionproblemsto computingsolutions,weneedto supply
an additional ingredient:

(5) four polynomial time algorithms, onefor Start, Introduce,Forget, and
Join nodes,that take as input

• a tree node x of the algorithm's type,
• the bag Bx and introducedor forgotten vertices,
• a characteristic Cx from the full set at x,
• for each child yi of x, a pair (Cyi

, Syi
) of the characteristicCyi

at yi

that led to Cx and a partial solution Syi
at yi with characteristic

Cyi
,

and produceasoutput a partial solution Sx at x that hascharacteristic
Cx and whoserestriction to Gyi

is Syi
.

Theorem 16. If the conditions (1){(5) are met for someproblem P , there
is a polynomial-time algorithm computing a solution to P . If solving the
decisionproblem using Theorem 15 takes time O(n), and the algorithms of
ingredient (5) have constant running time, the solution can be computed in
time O(n).
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Proof. Computea characteristicof the root nodeusingthe algorithm outlined
in the proof of Theorem15,but storewith each newcharacteristicpointers to
the corresponding characteristicsof the children. Then apply the algorithms
of ingredient (5) in a bottom-up passon the tree. 2

2.4 The Implementation

We successfullyimplemented the abstract tree-automaton technique as a
genericC++ \template class" [SE90]. For a concreteproblem, the ingredi-
ents of the recipe from Section2.3aresubstituted into this template: Generic
(compile-time) parameterssupply the classof characteristics(ingredient (1)),
the four combination algorithms (ingredient (3)) and optionally four algo-
rithms to construct solutions from characteristics (ingredient (5)). By this
means,we obtained algorithms for decidingIndependentSet, Coloring,
and Pathwidth aswell as for solving the corresponding construction prob-
lems. The Pathwidth problem and computing path decompositionswill be
treated in detail in the next chapter.

An input instanceconsistsof a graph G = (V,E), a tree decomposition
(T = (X,F ), {Bx}x2F ) of G and parametersspeci¯c to the problem such as
the number of colorsfor Coloring; we assumethat the tree decomposition
has sizeO(n) and let k denote its width. Processingthe input starts with
the conversionof the supplied tree decomposition into a rooted tree decom-
position with Start, Introduce,Forget, and Join nodes. A root of T is chosen
arbitrarily . Then a recursive algorithm converts subtreesof the input tree
decomposition into the desired form, creating for leaves a Start node and
a chain of Introduce nodes,generatinga chain of Join nodes for each node
with at least two children, and replacingnodeswith a singlechild by chains
of Forget and Introducenodes. A rough estimateof the number of resulting
nodescan be obtained as follows: There are as many Start nodesas leaves;
each node of the original tree decomposition causesat most k + 1 Introduce
nodesto be created;every vertex of the graph is forgotten exactly once;and
there are at most twice as many Join nodes as there were nodes of degree
greater than two. Therefore the converted tree decomposition still has size
O(n); Kloks [Klo94] shows that with a more involved algorithm, the number
of Start, Introduce,Forget, and Join nodescan be limited to at most 4n.

In the further discussion,x ∈ X denotes a tree node with children
y1, . . . , yd, i.e., d = 0 for Start nodes,d = 1 for Introduceand Forget nodes,
and d = 2 for Join nodes. The straightforward way of ¯nding a character-
istic at the root of T would be to compute in a bottom-up passon T the
full sets of characteristics at every node; at node x, we would repeatedly
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invoke the combination procedureappropriate for x with all combinations
(Cy1 , . . . , Cyd

) of one characteristic from the full set of each child yi of x.
This approach is unsatisfactory becausewe are only interested in a single
characteristic at the root and not in all of them. Moreover, we would like to
compute at each node only as many characteristicsas necessaryto ¯nd the
characteristic at the root. For this reason,the computation of characteris-
tics is pipelined: every node x remembers the state of the computation of
the full set of characteristicsCx at x and when the parent node asksfor the
next characteristic from Cx, it resumesthe computation of the full set until
a newCx is found, then sendsCx to the parent, and suspendsthe execution
until the parent issuesthe next request (seeSection 6.3 for a discussionof
pipelining in C++). Join nodes needto combine all pairs of characteristics
from their two children, so, in general,they askmore than oncefor the same
characteristic. Therefore, we store at each node the characteristics already
computedin a \cache" to avoid computing them again (otherwise,we would
violate the linear time bound). At somepoint, the problem-speci¯c part of
the algorithm may signalizethat at node x no further characteristicscan be
found|then the cache at x must contain the full set of characteristics Cx.
Sinceat x, all requestsfor characteristicscannow besatis¯ed from the cache,
the cachesat nodesin the subtreeTx can and will be discarded.

Once a characteristic at the root has been found, the algorithm enters
a secondstage, in which a solution is computed bottom-up by functions
constructing a partial solution at any node x. The functions of ingredient
(5) take as parameters a characteristic Cx at node x and for each of its
children y1, . . . , yd pairs (Cyi

, Syi
) where the Syi

are partial solutions at yi

with characteristic Cyi
and where the Cyi

can be combined to Cx. Before
we can call these solution-computing procedures,we have to determine at
each node x a characteristic Cx so that characteristics of siblings can be
combined to the characteristic of their parent. During the ¯rst stageof the
algorithm, we discard the characteristicscached at x as soon as the full set
of characteristics at the parent of x has been found. Therefore we have
to recomputediscardedcharacteristicsby enumerating the characteristicsof
the children y1, . . . , yd of x until a combination of (Cy1 , . . . , Cyd

) is found
that givesrise to Cx. In recomputing,we usethe cachesagain; for situations
wherememory is scarce,we optionally °ush cachesin the secondstageas in
the ¯rst stage.However, °ushing cachesin the secondstagemeanssacri¯cing
the linear running time|it may happen that the characteristicsat the leaf
nodeshave to be recomputedO(h) = O(n) times, whereh is the height of T
(seealsoFigure 24 in Chapter 3).

Additional features of our implementation of the tree-automaton tech-
nique are the elimination of redundant characteristics basedon a problem-
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speci¯c partial order on the characteristics(assumingthat \greater" charac-
teristics aresubsumedby \smaller" characteristics,asin the Independent-

Set problem, wherecharacteristics (sx, I
0
x) were discardedin favor of char-

acteristics (~sx, I
0
x) with ~sx > sx) and the gathering of statistics such as the

number of characteristicscomputed and the time spent in the stagesof the
algorithm. Translating applicationsof the abstract tree-automatontechnique
into separatesoftware modules for the tree automaton and problem-speci¯c
parts had the advantagesthat

• complex algorithms could be decomposed into small functions with
clearly de¯ned and simple requirements,

• all problems-speci¯c implementations equally bene¯ted from features
and enhancements of the tree-automatonmodule,

• for new problems,the tree automaton did not needto be programmed
from scratch, and

• independent testing was possible.

The performanceof our implementation, including the e®ectof optimiza-
tions, will be discussedat the end of the next chapter in conjunction with
the computation of path decompositions; information on installing our tree-
decomposition software with the tree-automaton template is given in Sec-
tion A.2.
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Chapter3

FindingPath Decompositions

This chapter is devoted to a particular application of the framework devel-
oped in the previouschapter: given a graphG, a bounded-width tree decom-
position of G, and an integer `, we compute a path decomposition of G of
width `, if oneexists. Path decompositionsarespecialcasesof tree decompo-
sitions wherethe underlying tree is actually a path; the minimum-width path
decomposition de¯nes the pathwidth of a graph. Every path decomposition
is also a tree decomposition, but, in general,a minimum-width tree decom-
position will not be a path decomposition. This implies that the treewidth of
a graph is boundedfrom below by its pathwidth; just like Treewidth, the
Pathwidth problem of decidingwhether a graph hasa path decomposition
of at most a given width is NP-complete[ACP87].

3.1 Applications of Path Decompositions

We are interestedin computing path decompositions for two reasons:First,
computing path decompositions turns out to be an important problem in
VLSI design[MÄoh90]and, second,the algorithm for computing path decom-
positions can be extendedto compute tree decompositions. The latter may
seemparadoxical becausethe algorithms alreadyget a tree decomposition as
part of the input, but an investigation of the enhancedalgorithm in Chap-
ter 4 will show that this algorithm can convert tree decompositions of any
width into a tree decomposition of width `, providedG hastreewidth at most
`. Both the path-decomposition and the tree-decomposition variant of the
algorithm weredeveloped by Bodlaenderand Kloks [BK96].

Gate arrays are a design style for integrated circuits where the silicon
wafershave beenpre-processedto a certain fabrication step, and \p ersonal-
ization" to a concreteapplication usually amounts to adding a ¯nal single
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Figure 3: A gate matrix layout (basedon [Bod93]).

layer of metal [WE85, MÄoh90]. The genericwafer is madeup of rows(arrays)
of gatesseparatedby routing channels,which obey strict directional control
over routing: As depicted in Figure 3, each channel consistsof two layers,
one for horizontal routing, the other for vertical routing. Through vertical
wires, every gate can connectto any of the horizontal tracks; the number of
tracks determinesthe distance between rows of gates, therefore one would
like to minimize their number in order to ¯t more rows on the chip. Nets
are hyperedgesconnectingseveral gates; given a number of gatesassigned
to a particular row and nets, our task is to arrange the gates in that row
(¯nd a permutation of the gates)and assignnets to tracks such that nets on
the sametrack do not overlap and the number of tracks is minimized|w e
disregard the possibility of a net changing tracks. For n nets and m gates,
the input can be encoded in an n×m booleanmatrix M = (mij)1· i· n,1· j· m

such that mij = 1 if and only if net i is connectedto gate j; M is called
the gate matrix, hencethe problem name GateMatrixLayout. Seethe
left-hand sideof Figure 4 for an example.

Solving the GateMatrixLayout problem is equivalent to computing
a minimum-width path decomposition (this result is due to Fellows and
Langston [FL89]): We construct a graph G by creating a vertex vi for each
net i and by linking vi and vi′ by an edgewhenever there is a gatej connected
to both net i and net i0 (i.e., mij = 1 = mi′j, seeFigure 4, right-hand side).
It follows that the verticesof nets connectedto the samegate form a clique.
A path decomposition of G translates into a gate-matrix layout: go through
the bags of the path decomposition from the left to the right and at each
bag,

• if vi occursfor the ¯rst time, assignnet i to the lowestcurrently unused
track so that it starts at the current position and endsat the last gate
to which it is connected,
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Figure 4: The input gate matrix for the example of Figure 3 and the
corresponding graph. Every column of the matrix represents a gate, ev-
ery row a net. mij = 1 means that gate j must be connected to net
i; e.g., net 1 links gates 1, 2, 6 and 7, and gate 2 is connected to
nets 1 and 4. The path decomposition formed by a path of the bags
{1}, {1,4}, {1,4,2}, {1,5,2}, {1,5,3}, {1,3} corresponds to the solution of
Figure 3.

• if gatej is not yet placedand the current bagcontains all nets to which
j is connected,append j to the list of placedgates.

By Lemma 11, all nets of j occur in some bag, so all gates get placed;
the number of tracks usedequalsthe sizeof the largest bag. On the other
hand, an arbitrary G givesrise to an instanceof GateMatrixLayout: For
every vertex v, we createa net iv, and add for every edge(u, v) a gate j(u,v)

connectedto the nets iu and iv. From a layout of this instance,we produce
a path decomposition by creating for each gate j a bag that contains the
vertices v of nets iv above gate j; the width of the path decomposition is
strictly smaller than the number of tracks used.

The Pathwidth problemis alsocloselyrelatedto Bandwidth andother
problemsmeasuringthe \width" of total vertex orderings. For a graph G =
(V,E), the bandwidth of a total orderingon the verticesf : V ↔ {1, . . . , |V |}
is de¯ned as the maximum distance|f (u) − f (v)| betweentwo adjacent ver-
tices u and v, and the bandwidth of the graph is the minimum bandwidth
of all vertex orderings. We show that the bandwidth is an upper bound on
the pathwidth of a graph; further relations are listed in [Bod96b]. Given a
graph G = (V,E) of bandwidth k and an ordering f , we construct a path
decomposition of G by de¯ning bagsBf(u) := {v : 0 ≤ f (v) − f (u) ≤ k}
and linking Bf(u) and Bf(v) by an edgeif |f (u) − f (v)| = 1. If the ordering
has bandwidth k, the bagshave size at most k + 1, every edge(u, v) ∈ E
is covered by Bminf f(u),f(v)g and each vertex u occurs in the contiguous se-
quenceof bagsBmaxf 0,f(u)¡ kg, . . . , Bf(u); hencethe bagslinked in this manner
constitute a path decomposition of G.
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3.2 Interfacing to the Tree-Automaton Technique

The remainder of this chapter is devoted to the construction and analysis
of the path-decomposition computation algorithm by Bodlaenderand Kloks
and our implementation of it. The aim is to \prepare" a linear-time al-
gorithm according to the recipe of Chapter 2, therefore we needto specify
constant-size characteristics and constant-time combination algorithms|in
other words, the number of characteristicsand the time bound of the com-
bination algorithms may depend arbitrarily on the width k of the input tree
decomposition and the desiredpathwidth ` but not at all on the number of
verticesof the input graph G. Characteristicsare to represent partial solu-
tions, which are path decompositions of width at most ` in somesubgraph
Gx of G; as we saw, characteristicsneedto carry the information necessary
to build from characteristicsof siblings the characteristicsof their parent.

Given a graph G = (V,E), a tree decomposition (T = (X,F ), {Bx}x2X)
of G and a requestedpathwidth `, we plan to provide, for computing a path
decomposition of width at most ` (or determining that G haspathwidth > `),

the de¯nition of a characteristic of a path decomposition, such that the num-
ber of characteristicsis independent of n = |V |,

four combination algorithms with a time bound independent of n, which at
the four di®erent typesof tree nodesx ∈ X computecharacteristicsat
x from characteristicsof the children of x, and

four solution-computing algorithms that expand characteristics to path de-
compositions.

We let k denote the width of the tree decomposition, and assumethat the
tree decomposition hasonly Start, Introduce,Forget, and Join nodes. Partial
solutionsSx at tree nodesx are path decompositions of width at most ` of
the subgraphGx. To distinguish these path decompositions from the tree
decomposition given with the input, we mark components of the former by
a hat (^); furthermore, instead of writing Sx = (P̂ = (X̂, F̂ ), {B̂i}i2 X̂) for
a partial solution at tree node x, we denote such a path decomposition by
a sequenceSx = 〈B̂i〉1· i· m, with the degeneratetree P̂ = (X̂, F̂ ) given
implicitly by nodesX̂ = {1, . . . ,m} and edgesF̂ = {(i, i + 1) : 1 ≤ i < m}.
A sequence〈B̂i〉1· i· m is a path decomposition of Gx if and only if each vertex
v ∈ Gx occurs precisely in a contiguous subsequence〈B̂i〉first(v)· i· last(v) and
each edgeof Gx is covered by somebag (i.e., for each edgethere is a bag
containing both endpoints).

Given a partial solution Sx at tree node x, how do we derive a suitable
characteristic Cx? Using Sx = 〈B̂i〉1· i· m itself as characteristic is ruled out
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by the fact that Sx grows with the number of vertices of Gx, and hence
dependssubstantially on n. But let us postponethis issuefor a moment and
considerhow the algorithm would work with Cx = Sx. Then it will be easier
to identify the relevant information about Sx, which needsto be stored in
Cx.

A Start node x with vertex v would produceall possiblepath decompo-
sitions of the graph Gx = ({v}, ∅), e.g.,

〈{v}〉, 〈∅, {v}〉, 〈∅, {v}, ∅〉, 〈∅, ∅, {v}, {v}, ∅〉, . . .

and so on. For the moment, we ignore that there is an in¯nite number
of such path decompositions. An Introduce node x with child y and new
vertex v takeseach path decomposition Sy of Gy (producedat node y) and
createscandidates ~Sx for path decompositions of Gx by inserting v into all
contiguous subsequencesof bagsin copiesof Sy. If a candidate ~Sx consistsof
bagswith at most `+ 1 elements, and if in ~Sx, all edgesbetweenv and vertices
in By are covered, then Sx := ~Sx is a path decomposition of Gx of width at
most ` and is insertedinto the output set. A Forget nodepasseson its child's
path decompositionsunchanged(note that wemust not remove the forgotten
vertex); a little more work is neededfor Join nodesx with children y and z:
We mergeonly path decompositionsSy and Sz whosepaths are of the same
length and check whether the pairwise union is a path decomposition of Gx

of width at mast `. If there is a path decomposition of width at most ` of
the entire graph, it is found in principle using the given four combination
procedures.

We can limit the number of partial solutions to a ¯nite value by only
generatingpartial solutionsSx in which adjacent bagsdi®er. Start nodesthen
produce 〈{v}〉, 〈∅, {v}〉, 〈{v}, ∅〉 and 〈∅, {v}, ∅〉; Introduce nodesoptionally
duplicate the ¯rst and last bagsin which the new vertex v is to be put; and,
as before, Forget nodes do nothing. At Join nodes, bags in Sy and Sz are
repeated in all possibleways to bring Sy and Sz to the samelength. After
merging the expandedbag sequencesbag by bag, we eliminate repetitions
of consecutive bags. Sincewe aim for a ¯nite number of characteristicsthat
is independent of n, we assumein the following that in a partial solution
Sx = 〈B̂i〉i no bag is repeated.

How do we achieve an equivalent computation with constant-size charac-
teristics? Looking for somekind of \compression", we recall the interference
property of tree decompositions (Lemma 14): If, at two nodesy and z, par-
tial solutions Sy and Sz share vertices, the shared vertices are in the bag
Bx of the lowest common ancestorx of y and z. Thus, at x, only vertices
in Bx determine the compatibilit y of partial solutions at children of x, and

33



1 2

4 5 63

Bx

Gx

Figure 5: The reduction operation. The bagsB̂1 = {1,3,4}, B̂2 = {1,2,4},
B̂3 = {2,4,5}, B̂4 = {2,5,6} of a path decomposition of Gx are projected to
¹B1 = {1}, ¹B2 = {1,2}, ¹B3 = {2} (B̂3 and B̂4 both map to ¹B3).

the sizeof Bx is bounded by k + 1. Consequently, to form one part of the
characteristic Cx of Sx = 〈B̂i〉1· i· m, we eliminate from Sx all verticesnot in
Bx, getting 〈B̂i∩Bx〉1· i· m, and from this sequencewe discardrepeatedsets,
arriving at 〈B̂ij ∩Bx〉1· j· m′ =: 〈 ¹Bj〉1· j· m′ (seeFigure 5). We call 〈 ¹Bj〉1· j· m′

a reduced bag sequence. Thanks to the removal of equal contiguous sets,the
length of such sequencesis boundedby 2k + 3: for k = 0 the bound is 3, and
extending a reducedsequenceby one vertex, we can duplicate at most two
bags,so incrementing k meansincreasingthe length bound by 2. Each of up
to k + 1 verticesoccursin somebag for the ¯rst time, and in someother bag
for the last time; hencethere areat most

¡
i
2

¢k+1 ≤ i2k+2 ways of placingk+ 1
verticesinto i bags,and by summingover i, it follows that there are at most
(2k + 3)2k+3 sequences〈 ¹Bj〉j, a number independent of n. Also note that
〈 ¹Bj〉j is a path decomposition of Bx|this will be an important invariant of
the ¯nal characteristic.

Can reducedsequences〈 ¹Bj〉j themselvesserve ascharacteristicsCx? Not
quite. Going from Sx = 〈B̂i〉i to 〈 ¹Bj〉j, we losetoo much information about
Sx. Notably, we needto supplement the reducedsequences〈 ¹Bj〉j with infor-
mation about how full the bagswerebefore〈B̂i〉i was reducedto 〈 ¹Bj〉j. We
arguethat two simplevariants of recording\bag utilization" with the reduced
bag sequencesdo not meet the requirements and show how a sophisticated
approach achievesthe desiredresult. Storing with each reducedbag ¹Bj the
sizeof the largestoriginal bag B̂i that wasreducedto ¹Bj leadsto incomplete
combination algorithms (seeSections2.2 and 2.3 for a discussionof correct-
nessand completeness).Supposeat nodex, the path decomposition Sx of Gx
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Figure 6: Example graph and tree decomposition

is characterizedby a sequence〈( ¹Bj, uj)〉1· j· m′ whereuj ∈ N recordsthe size
of the largest B̂i projected to ¹Bj. The envisagedcombination procedurefor
Join nodesx with children y and z considersonly characteristicsof children

Cy = 〈( ¹By,j, uy,j)〉1· j· my
and Cz = 〈( ¹Bz,j, uz,j)〉1· j· mz

with equal bag sequences,i.e., my = mz and ¹By,j = ¹Bz,j for 1 ≤ j ≤ my.
After setting mx := my, ¹Bx,j := ¹By,j, and ux,j := uy,j + uz,j − | ¹Bj|, it
discards all results Cx = 〈( ¹Bx,j, ux,j)〉1· j· mx

with any ux,j > ` + 1. This
procedure is correct becausewe can merge partial solutions Sy at node y
with characteristic Cy and Sz at node z with characteristic Cz to a path
decomposition Sx of Gx with characteristic Cx. Unfortunately, there are
partial solutions Sy and Sz that can be combined to a solution Sx but for
which the combination proceduredoes not yield a characteristic. Take for
examplethe graph with the tree decomposition of width 2 shown in Figure 6.
Characteristics of the left \In tro c" node need to cover the clique {a, b, c}
(Lemma 11), so they take the form

〈. . . , ({a, b, c},3), . . .〉

wherethe other reducedbagsareproper subsetsof {a, b, c}. Thereforeat the
left Forgetnode,each characteristicwill contain a pair ({b, c},3), aswill every
characteristic at the Forget node on the right. Merging any characteristics
of the two Forget nodes at the Join node yields a pair ({b, c},3 + 3− 2),
and the result is discarded, even though the underlying graph clearly has
pathwidth 2.
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The shortcomingof storing the maximum utilization with each bag in the
reducedsequenceis causedby the fact that G[{a, b, c}] haspath decomposi-
tions whoserestriction to BForget a = {b, c} contains not only bags{b, c} with
utilization 3 but also somewith utilization less than 3, namely 2. Those
bagsB̂i = {b, c} do have room to accommodate node d, but our approach of
only remembering the maximum utilization doesnot take this into account.
Instead, we might resort to the other extreme and store with each ¹Bj the
utilization sequence of bag sizes〈|B̂i|〉i0 · i· i1 for the bagsB̂i with restriction
B̂i ∩ Bx = ¹Bj. While su±cient for showing correctnessand completeness
of suitable combination procedures,the length of utilization sequencesde-
pendson the sizeof the subgraphGx and henceon n. However, let us ¯rst
prove that such \preliminary" characteristics of non-constant size are ad-
equate with regard to correctnessand completeness.Later we will ¯nd a
compromisebetweensizeand information content and amendthe following
proofs for the ¯nal form of the characteristic of a path decomposition.

3.3 Preliminary Characteristics

The \preliminary" characteristic of a path decomposition Sx = 〈B̂i〉1· i· m of
a subgraphGx is computedas follows: We assumethat consecutive bagsin
Sx di®erby exactly onevertex, otherwiseweremove repeatedbagsand insert
new bagsbetweenbagsthat di®erin more than onevertex. We set ui to the
sizeof B̂i and restrict B̂i to the bagBx of tree node x. Proceedingfrom the
left to the right, we remove repeatedequal sets B̂i ∩ Bx and build from the
corresponding ui = |B̂i| a sequence〈uj,1, uj,2, . . . , uj,nj

〉, which is stored with
¹Bj := B̂i ∩Bx, giving a characteristic

Cx = 〈( ¹Bj, 〈uj,1, uj,2, . . . , uj,nj
〉)〉1· j· m′

The stepsof deriving a preliminary characteristicareshown in Figure 7, while
the operation of projecting a normalizedbagsequenceto Bx and constructing
the utilization sequencesis depictedschematically in Figure 8.

To put the preliminary characteristics to work, we needto show how to
combine characteristicsat the four di®erent node typessothat for each node
x and each partial solution Sx (a path decomposition of Gx with width at
most `) the characteristic Cx of Sx is built; moreover, for any computedCx

there must be at least oneSx with characteristic Cx.

Start Nodes

A Start nodex with vertex v haspath decompositions〈{v}〉, 〈∅, {v}〉, 〈{v}, ∅〉
and 〈∅, {v}, ∅〉|remem ber that we decidedto discard repeatedbagsand to
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arbitrary path decomposition Sx of Gx

adjacent bagsdi®er,number bounded

adjacent bagsdi®er in exactly onevertex

normalize

preliminary characteristic Cx of Sx

remove adjacent equalbags

determinebag sizesrestrict to Bx

build utilization sequencesremove adjacent equalbags

sizeindependent of n length O(n)

Figure 7: Computation of \preliminary characteristic"

1 3 2 4 2

1,3,2 4 2

Figure 8: Example of deriving a preliminary characteristic. Vertices in Bx

are ¯lled black, i.e., the characteristic is 〈( ,1,3,2), ( ,1), (∅,2)〉.
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Figure 9: Inserting N into a preliminary characteristic

compensatefor this restriction by adapting the combination procedures.The
corresponding set of preliminary characteristicsis

Cx = {〈({v},1)〉, 〈(∅,0), ({v},1)〉, 〈({v},1), (∅,0)〉, 〈(∅,0), ({v},1), (∅,0)〉}.

Note that we have omitted the sequencebrackets 〈·〉 for the utilization se-
quencesto improve readability. There is a one-to-onecorrespondencebe-
tweenpartial solutionsand characteristics,which takescareof correctness(a
solution for each characteristic) and completeness(a characteristic for each
solution), henceCx is a full set of characteristicsat Start node x.

Intro duce Nodes

Introduce nodesx with child y and introduced vertex v take each charac-
teristic Cy produced at y and iterate through combinations of adding v to
a range of bags in Cy (seeFigure 9 for a depiction of this operation). The
¯rst and last bagsinto which v is put are split into an inner copy with v and
an outer copy without v. Furthermore, the utilization sequenceswithin the
range are incremented to re°ect the new vertex; the utilization sequenceof
each boundary bag is split in all possibleways into two utilization sequences,
which go with the two copiesof the boundary bag. The sequenceelement
at which the split is performed is included at the end of the ¯rst sequence
and the beginning of the secondsequence,and the sequencein v's range is
incremented. Each resulting Cx must passtwo checks in order not to be dis-
carded: All edgesbetweenv and someother node of the subgraphGx must
be covered; otherwise,Cx is not a valid path decomposition of Bx and thus
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cannotbea characteristicof a path decomposition of Gx. And secondly, none
of the utilization valuesmay exceedthe upper limit of `+ 1. Correctnessand
completenessof this operation are proved by induction on the tree, taking
asinduction hypothesisthat correctnessand completenesshold for the child:
For each Cx, there is a Cy from which Cx was constructed; by induction,
there exists a normalizedSy with characteristic Cy. By the de¯nition of the
preliminary characteristic, there is a one-to-onecorrespondencebetweenuti-
lization valuesui in Cy and bags in the path decomposition Sy. Therefore
repeating two reducedbagsin Cy and adding v to a range of reducedbags
inducesan equivalent operation on Sy, yielding a sequenceof bagsthat we
call Sx. In Sx, all edgesof Gx are coveredand verticesoccur only in contigu-
ousranges,either becauseof the corresponding property of Sy or becauseof
the way v was added. HenceSx is a path decomposition of Gx. Moreover,
Sx obviously hascharacteristic Cx, which completesthe proof of correctness:
For each characteristic Cx at x, there exists a path decomposition Sx of Gx.

To provecompleteness,wemust show that the characteristic of every par-
tial solution Sx is computed,given every characteristic at y. The restriction
of any Sx to Gy|formed by removing the newvertex v|is a partial solution
at y, which we call Sy. By the induction hypothesis,we know that the char-
acteristic Cy of Sy is computedat y. As outlined in Figure 10, we will show

combination at xcombination at xcombination at xcombination at xcombination at xcombination at xcombination at xcombination at xcombination at xcombination at xcombination at xcombination at xcombination at xcombination at xcombination at xcombination at xcombination at xcombination at xcombination at xcombination at xcombination at xcombination at xcombination at xcombination at xcombination at xcombination at xcombination at xcombination at xcombination at xcombination at xcombination at xcombination at xcombination at xcombination at xcombination at xcombination at xcombination at xcombination at xcombination at xcombination at xcombination at xcombination at xcombination at xcombination at xcombination at xcombination at xcombination at xcombination at xcombination at xcombination at x
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given

found by induction

occurenceto be shown

Figure 10: The approach taken by the completenessproofs

that the combination procedureon input Cy will produce the characteristic
Cx of Sx. Without lossof generality, we may assumethat in Sx, consecutive
bagsdi®er in exactly onevertex. Removing v from the ¯rst bag in which it
appears makes this bag equal to its predecessor.Likewise,the last bag in
which v appearscoincideswith its successorwhen v is deleted. Thus Sy has
repeated bagsat the beginning and at the end of the range into which v is
inserted to get Sx, but all other bagsstill di®er in exactly onevertex. In the
characteristic Cy of Sy, these repeated bags get contracted, but none else.
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The combination algorithm checks for all rangesof reduced bags whether
inserting v will cover all edgesbetweenv and other verticesin Bx, so it will
alsoconsideradding v to from the ¯rst contracted to the last contracted bag.
For this choice of ¯rst and last bags, all edgeswill be covered becauseSx

is a valid path decomposition. The combination algorithm then duplicates
the ¯rst and last bag, thus undoing the contraction, and inserts v into the
interior of the range. This gives the characteristic Cx of Sx and we have
shown the completenessof the Introducenode combination algorithm.

Forget Nodes

The combination algorithm for Forget nodes x with child y and forgotten
vertex v transforms characteristics Cy into characteristics Cx by removing
v from all bags in Cy, deleting repeated bags,and concatenatingtheir uti-
lization sequences.Correctness:Given a characteristic Cx, there exists a Cy

from which Cx was constructed. By induction, there is a partial solution Sy

on Gy with characteristic Cy. SinceGx = Gy, Sy is alsoa partial solution of
Gx; hencefor each Cx, there is a partial solution. As for completeness,we
follow again the outline of Figure 10; any partial solution Sx with character-
istic Cx is alsoa partial solution at y, hencethe characteristic Cy of Sy = Sx

is computed at y. Performing the Forget node algorithm on Cy yields a
characteristic ~Cx of Sx, and sincecharacteristicsare unique, ~Cx = Cx.

Join Nodes

Let x be a Join node with children y and z; remember, Bx = By = Bz

for Join nodes. Combination of characteristicsCy and Cz at node y and z,
respectively, will only be attempted when their reducedbag sequencesco-
incide. By the interferenceproperty of tree decompositions, verticesshared
by partial solutions Sy and Sz are in Bx, therefore utilization values be-
yond the size of the reducedbag in Cy and Cz refer to different forgotten
vertices and thus must be added. Even when the reduced bag sequences
of Cy and Cz are equal, the corresponding utilization sequencesin Cy and
Cz do not necessarilyhave the samelength. We can bring two utilization
sequencesto the samelength by repeating someof the utilization values.
This corresponds to repeating bags in partial solutions, an operation that
maintains the path-decomposition property. Each way of expanding every
pair of utilization sequencesin Cy = 〈( ¹Bj, 〈uy,j,1, . . . , uy,j,ny,j

〉)〉1· j· my
and

Cz = 〈( ¹Bj, 〈uz,j,1, . . . , uz,j,nz,j
〉)〉1· j· mz

to the samelength givesrise to a can-
didate Cx of a characteristic at x: Cx has the samereducedbag sequence
as Cy and Cz, and its utilization sequencesare formed by summing the ex-
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pandedsequencesof Cy and Cz element by element and subtracting the size
of the corresponding bag, which would otherwisebe counted twice. Hence
we have

Cx = 〈( ¹Bj, 〈u¤
y,j,1 + u¤

z,j,1 − | ¹Bj|, . . . , u¤
y,j,nj

+ u¤
z,j,nj

− | ¹Bj|〉)〉1· j· my

wherethe sequences〈u¤
y,j,i〉1· i· nj

derive from 〈uy,j,i〉1· i· ny,j
by repeating el-

ements, and the 〈u¤
z,j,i〉1· i· nj

from 〈uz,j,i〉1· i· nz,j
. If a candidateCx has all

utilization values bounded by ` + 1, it is inserted into the output set and
discardedotherwise.

Let us consider the correctnessof this algorithm: Given Cx, there are
characteristicsCy at y andCz at z from which Cx wasbuilt. Let Sy andSz be
the corresponding partial solutions,which exist by the induction hypothesis.
We can mergeSy and Sz by ¯rst repeating bagsaccordingto the expansions
of the utilization sequences,and then computing the pairwise union. The
resulting Sx is a path decomposition of Gx: each edgeis covered, and each
vertex only occurs in a contiguous rangeof bags. Its width is boundedby `
sincethe utilization sequencesaccurately re°ect the bag sizesin Sy and Sz.

To prove completeness,we start from any partial solution Sx, which can
be restricted to Gy and Gz giving partial solutionsSy and Sz. By induction,
the characteristicsCy of Sy and Cz of Sz are computedat y and z; the Join-
node algorithm combines them, creating as output a set of characteristics
C = { ~Cx,i}i2 I , among which must be the characteristic Cx of Sx. Because
the restrictions of Sx, Sy, and Sz to Bx = By = Bz are identical, Cx, Cy, and
Cz have the samereducedbag sequences,so we only have to show that the
utilization sequencesof Cx can be built by expanding and summing corre-
sponding sequencesof Cy and Cz. Expansion is neededwhen Sx restricted
to Gy or Gz contains repeated bags, which are removed in computing the
characteristicsCy and Cz. The expansionof the utilization sequencesthat
corresponds to restoring the deletedrepeatedbagsleadsto a C0

x that accu-
rately re°ects the bag sizesof Sx, henceCx = C0

x ∈ C.
This completesthe constructionof combination proceduresfor computing

path decompositions of G of width at most ` using \preliminary" character-
istics. From the characteristic Croot at the root and from the characteristic
that wasusedat each other nodeto construct the characteristicof the parent,
wecanderivea path decomposition Sroot of Groot = G by executingthe insert
and mergeoperations that were imitated by combining preliminary charac-
teristics. Indeed,computing preliminary characteristicsCx instead of entire
partial solutionsSx, as on page33, did not causemuch changeto the com-
bination algorithms becausethe relevant information for combination|the
structure of the restriction of Sx to G[Bx] and the original bag sizes|w ere
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conserved in the characteristic. As we saw earlier, size and number of re-
duced bag sequencesare independent of the number n of vertices in G, in
contrast to the utilization sequences,whosetotal length equalsthe number
of bagsof the characterizedpath decomposition and is thereforelinear in n.

We already observed that substituting the maximum utilization for each
utilization sequencefalls short with regardto completeness.Sincewe require
that no characteristicbeingcomputedat the root nodeimplies that the graph
has pathwidth greater than `, we have to ¯nd a way to reducethe size of
the characteristics without sacri¯cing completeness.Any attempt of going
from one utilization value to a ¯xed-length sequence|say three values,one
for the ¯rst element, the greatestelement, and the last element of the actual
utilization sequence|is doomed as well: In the next section,we will give a
classT of ­(2 `) utilization sequencesand show that to achieve correctness
and completeness,they must map to distinct compressedutilization repre-
sentations. However, with a ¯xed number of valuesin the range0, . . . , ` + 1,
we cannot represent 2` objects. After this result of our own, we resumethe
construction by Bodlaenderand Kloks and show that representing arbitrary
utilization sequencesby elements of T is su±cient and that the sizeof T is
in O(22`), that is, independent of the number of verticesn.

3.4 Compressing Utilization Sequences

In the following, U will denote the classof ¯nite sequencesof nonnegative
integers,which we call utilization sequences;U` stands for the U-sequences
with elements in the range 0,.. . ,` + 1. We de¯ne a subsetT of utilization
sequencesand its restriction T` to U`: The de¯ning property of sequences
τ ∈ T is that betweenany two non-consecutive sequenceelements, there is
an element that is either greateror smaller than both of them. For example,
〈1,5,3,4〉 conforms to this condition, whereas〈1,3,5,4〉 does not because
1≤ 3≤ 5. Let us derive a bound on the number of such τ ∈ T`. For integers
0 ≤ u1 < u2 < . . . < us ≤ ` + 1, the sequence〈u1, us, u2, us¡ 1, u3, us¡ 2, . . .〉
is in T`. There are 2`+2 − 1 ways to choosenon-empty subsets{u1, . . . , us}
from {0, . . . , ` + 1}, and each choice leadsto a di®erent sequence,therefore
|T`| = ­(2 `). On the other hand, it canbe shown that every T`-sequencethat
starts with its minimum is of the above form, and every T`-sequencestarting
with its maximum is of the form 〈us, u1, us¡ 1, u2, us¡ 2, u3, . . .〉. In every T -
sequence,either the maximum or the minimum occursonly once;if we split
a sequenceat this hinge element so that it endsup in both parts, we get a
right part, which is in oneof the forms above, and a left part, whosereverse
is in this form. Thus we have reducedcounting the number of T`-sequences
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to counting subsetsof {0, . . . , `+ 1}. A detailed calculation leadsto a precise
count of T` := 32

3
4` − 2

3
= £(2 2`).

To seewhy in compressingutilization sequencesof preliminary character-
istics, two sequencesfrom T must never have the samecompressedimage,we
needto introducea little apparatus. A sequenceα ∈ U can be expandedby
repeating elements; expansionswill bedenotedby an asterisk,e.g.,a possible
expansionof α = 〈1,3,2,2,5〉 is α¤ = 〈1,3,3,2,2,2,5,5〉. Remember that
those numbers stand for bag sizes,and bags in a path decomposition can
be repeatedwithout destroying the path decomposition; moreover, repeating
bagsand utilization valuesis necessaryin mergingpartial solutionsand char-
acteristics. We write α ≤ β when α and β have the samelength and each
element ai of α is at most asgreat as the corresponding element bi of β. We
extend≤ to a partial order 4 on sequencesof di®erent length: α 4 β shall
hold if there exist expansionsα¤ and β¤ of the samelength with α¤ ≤ β¤.
Informally, α 4 β expressesthat merging operations that work with β also
work with α. Equivalencewith respect to the combination operationsis con-
veyed by the equivalencerelation ³: We set α ³ β if and only if α 4 β and
α < β. Actual merging is re°ected in the addition operation; for expansions
of the samelength, α¤ + β¤ is the pairwisesumof the sequences,and α⊕β is
the set of the sumsof all expansionsof commonlength. One criterion of the
\qualit y" of a utilization sequenceα is its maximum maxα, the value of its
greatestelement. The maximum matters, for example,at Introduce nodes,
wherea new vertex is addedto a rangeof bagsand we must ensurethat the
maximal bag utilization doesnot exceed̀ + 1. At Join nodes,the best ¯t of
two sequenceswith respect to the maximum utilization value is measuredby

min max(α⊕ β) := min{max(α¤ + β¤) : α¤, β¤ same-lengthexpansions}

The following two lemmashelp to establish that ¯xed-size utilization rep-
resentations cannot exist. We ¯rst claim that sequencesα and β indistin-
guishable by min max(· ⊕ γ) are equivalent and then argue that distinct
T -sequencesare never equivalent; Theorem 19 summarizesthe conclusion
that distinct T -sequencesare distinguishable.

Lemma 17. Let α and β be utilization sequences.If for all utilization se-
quencesγ, min max(α⊕ γ) = min max(β ⊕ γ), then α ³ β.

Lemma 18. For σ, τ ∈ T , σ ³ τ implies σ = τ .

Putting together the contrapositions of Lemma 18 and 17 yields

Theorem 19. For σ, τ ∈ T , if σ 6= τ , then there is a utilization sequence
γ ∈ U with min max(σ ⊕ γ) 6= min max(τ ⊕ γ). 2
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Any compressedutilization sequencemust contain information about the
maximum utilization of the represented utilization sequences,sincethis in-
formation is necessaryto know whether at an Introduce node a vertex can
be inserted into the whole range of bagsthat have the sameprojection ¹Bj.
Only utilization sequenceswith the samemaximum can map to the same
compressedrepresentation; otherwise,for correctness,the greaterof the val-
ueshad to determine the maximum stored in the representation, defeating
completeness:The characteristic claims that lessverticescan be addedthan
for which actually is room. ThereforeTheorem19 meansthat each element
of T` must be projected to a di®erent representation, bloating their number
to ­(2 `), beyond the capacity of a ¯xed number of utilization values. Before
proceeding,we give proofs of the precedinglemmas.

Proof of 17. Let α = 〈ai〉i, A = maxα and γ = 〈A−ai〉i. Then min max(α⊕
γ) = A. If min max(β ⊕ γ) ≤ A, then β 4 α. Switching the role of α and β
yields α 4 β and thereforeα ³ β. 2

Proof of 18. We show that there are expansionsσ¤ and τ ¤ with σ¤ = τ ¤.
Undoing the repetition of values,we then getσ = τ . Let L := len(σ)+ len(τ ).
Note that

(1) becauseof σ ³ τ , we have σ¤ ³ τ ¤ for any expansionsσ¤ and τ ¤,

(2) for expansionsσ¤ = 〈s¤
i 〉i and τ ¤ = 〈t¤

i 〉i with

len(σ¤) = len(τ ¤) > L,

there must be positionswhereelements have beenrepeatedboth in σ¤

and τ ¤, i.e., there is an index i with si = si¡ 1 and ti = ti¡ 1.

We construct inequalitiesof expansionsσi, τi,

σ1 ≤ τ1 ≤ σ2 ≤ τ2 ≤ . . . ≤ σj ≤ τj

invoking (1) repeatedlyand expandingearlierσi, τi to the length of the latest
pair. By (2) we canassumethat all σi, τi have length L. Eventually, equality
must hold becausethere is only a ¯nite number of expansionsof σ and τ of
length L. 2

We now move along to prove that representing utilization sequenceswith
a maximum of at most `+ 1 by T`-sequencesyieldsa linear-time algorithm for
path decomposition. To do so, we introduce the projection τ : U → T , use
it to de¯ne the ¯nal characteristics,adjust the combination algorithms and
extend the correctnessand completenessproofs. We have already seenthat
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Figure 11: Two utilization sequencesand their T -projection τ (·) (bold). Note
that the rangesto be deletedare not uniquely determined.

α ³ β re°ectsoneaspect of similarit y betweenutilization sequencesα and β,
namely, the behavior under min max tests. We will show that α ³ β implies
that we can interchangeα and β in any characteristic without sacri¯cing the
correctnessor completenessof the combination algorithms. Hencewe can
safely replace utilization sequencesα by small representativ es τ (α) of the
equivalenceclass[α]³ . It is a natural choice to chooseτ (α) from T , since
those sequenceshave been shown to be mutually inequivalent. Moreover,
we will seethat for each α with maxα ≤ ` + 1, there is a τ (α) ∈ T` with
τ (α) ³ α. Thereforewecanuniquely represent any valid utilization sequence
using T`.

For α = 〈ai〉i, τ (α) is de¯ned by repeatedly deleting o®endingrangesof
elements in α until the de¯nition of a T -sequenceis met: While there are
indices i and j with i < j so that for all elements ak betweeni and j holds
min{ai, aj} ≤ ak ≤ max{ai, aj}, remove all elements between i and j (i.e.,
the ak with i < k < j, seeFigure 11 for examples). Obviously, τ (α) ∈ T .
We can extend τ (α) to the length of α by repeating the greater boundary
of each deleted range, leading to a (τ (α))¤ with (τ (α))¤ ≥ α, so τ (α) < α.
Similarly, we can construct a lower bound (τ (α)) ¤ with (τ (α))¤ ≤ α, hence
τ (α) 4 α and τ (α) ³ α. As a side e®ectof this relation, we get that τ (α)
is well-de¯ned: If α gets reducedby di®erent deletionsto σ ∈ T and τ ∈ T ,
then σ ³ α ³ τ , so by Lemma 18, σ = τ .

45



arbitrary path decomposition Sx of Gx

adjacent bagsdi®er,number bounded

adjacent bagsdi®er in exactly onevertex

normalize

remove adjacent equalbags

determinebag sizesrestrict to Bx

build utilization sequencesremove adjacent equalbags

characteristic Cx of Sx

sizeindependent of n

length O(n)

compressusing τ (·)

length independent of n

Figure 12: The ¯nal characteristic

As a compressionoperation, τ (·) is the last ingredient of the ¯nal char-
acteristic. Figure 12 shows how τ (·) ¯ts into the procedurefor computing
the unique characteristic of a partial solution Sx in the subgraphGx of node
x; note that from now on, Cx will denote a ¯nal characteristic of a path
decomposition of subgraphGx. Cx = 〈( ¹Bj, τj)〉1· j· m′ consistsof a sequence
of reducedbags ¹Bj and T`-sequencesτj with the essential information about
the sizesof the bags B̂i of Sx = 〈B̂i〉1· i· m that are reducedto ¹Bj. What
doesCx tell us about Sx? Every pair of consecutive utilization values tj,p,
tj,p+1 in sequenceτj corresponds to a contiguous range of bags 〈B̂i〉q· i· q′,
which have intersection ¹Bj with Bx. About the sizesof those 〈B̂i〉q· i· q′, we
know the precisenumber of verticesin the ¯rst and last bag: |B̂q| = tj,p and
|B̂q′ | = tj,p+1. Furthermore, due to τj ∈ T , the sizesof the bagsbetweenq
and q0 vary only betweenmin{tj,p, tj,p+1} and max{tj,p, tj,p+1}.
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3.5 The Final Characteristic at Work

By completeness,we previously understood that for any partial solution Sx

at a tree node x, the combination algorithm will compute its characteristic
Cx. To succeedin proving completenesswith ¯nal characteristics, we need
to relax this requirement so that for any Sx, Cx does not needto be com-
puted, but there existsat least some\b etter" partial solution S0

x for which a
characteristic C0

x is computed at x. This is still su±cient to guarantee that
whenever a solution existson the entire graph, a characteristicof oneis really
found|indeed, it would su±ce to prove that whenever a partial solution at
x exists, any characteristic at x is computed at all. Earlier we argued that
for utilization sequences,α 4 β implies that α can be usedwherever β ¯ts;
building on this, we write C0

x 4 Cx if Cx and C0
x have the samereducedbag

sequenceand if for each reducedbag, the associated compressedutilization
sequencessatisfy τ 0

j 4 τj. In this case,C0
x subsumesCx, and our new notion

of completenessmeansthat for the partial solution Sx with characteristic
Cx, someC0

x with C0
x 4 Cx is computed;Figure 13 shows the impact on the

completenessproofs for combination procedures.
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occurenceto be shown

Figure 13: The revisedapproach for completenessproofs. Comparedto Fig-
ure 10, the characteristicsof the solutions are replacedby \b etter" charac-
teristics. The diagram shows the casewherex hasonechild; for Join nodes,
there are accordingly two restricted solutionsSy and Sz.

With regard to the full set of characteristics,the consequenceof the shift
is that full setsare no longer unique, though there still is a minimal full set.
Observe that if a combination procedureat somenode x producescharac-
teristics C0

x and C00
x with C00

x < C0
x, we may in fact discard C00

x . In contrast
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to the precedingsubsequent re¯nements of the characteristics,this is a prop-
erty of the entire (full) set of characteristics at a tree node x. Whether
redundant characteristicsare eliminated at each node or not doesnot a®ect
the desiredlinear running time, becauseeven without elimination, the num-
ber of characteristics is independent of n. However, redundancy in the full
set will be addressedin detail when we discussthe implementation of the
path-decomposition algorithm.

In the following, wewill iterate onelast time over the four tree-nodetypes,
giving combination algorithms and proving correctnessand completeness.
From time to time, it might be useful to skip aheadto Figures 18 and 20
on pages61 and 63 to seehow the combination algorithms work on concrete
characteristics.

Start and Intro duce Nodes

Of the four node types, only Start nodes behave exactly as before: They
producethe four characteristics

〈({v},1)〉, 〈(∅,0), ({v},1)〉, 〈({v},1), (∅,0)〉 and 〈(∅,0), ({v},1), (∅,0)〉

whose utilization sequencesare already T -sequences.No further work is
neededto show correctnessand completeness.Note that we can do without
the ¯rst three characteristics,becauseevery path decomposition building on
them can be extendedto contain empty bagsin front or in the back.

As for Introducenodesx with child y, our approach is exactly asbefore:
For every input characteristic Cy = 〈( ¹Bj, τj)〉1· j· m′,

• we determine all possibleranges〈 ¹Bj〉q· j· q′ into which the new vertex
v can be put so that all edgesbetweenv and other vertices in Bx are
covered,

• split the boundary sequencesτq = t1, . . . , tp and τq′ = t0
1, . . . , t

0
p′ at all

positions i, i0 into

τq,left = t1, . . . , ti τq,right = ti, . . . , tp

τq′,left = t0
1, . . . , t

0
i′ τq′,right = t0

i′ , . . . , t
0
p′

• and increment the elements of the sequencesassociatedwith bagsinside
the rangeof v.
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Cy

Cx

Sx

2 1 2 4 3 1 2

2 1 2 4 5 4 2 1 2

Sy

introduce
operation

Figure 14: Example of deriving a partial solution at an Introducenode. The
chosenrange for the new vertex N starts at the secondbag of Cy and ends
at the third; at the secondbag, the utilization sequenceis split at 4, while
at the third, the split is performedat 1.

The stepslead to several

Cx = 〈 ( ¹B1, τ1), . . . , ( ¹Bq¡ 1, τq¡ 1),
( ¹Bq, τq,left), ( ¹Bq ∪ {v}, τq,right + 1), beginning,
( ¹Bq+1 ∪ {v}, τq+1 + 1), . . . , ( ¹Bq′¡ 1 ∪ {v}, τq¡ 1 + 1), interior,
( ¹Bq′ ∪ {v}, τq′,left + 1), ( ¹Bq′ , τq′,right), end of range
( ¹Bq′+1, τq′+1), . . . , ( ¹Bm′ , τm′) 〉

and again we discard any Cx where the maximum of any τj exceeds̀ + 1.
Splitting as well as adding constants to T -sequencesgivesT -sequences,so
the proceduremaps ¯nal characteristics to ¯nal characteristics. Figure 14
shows an example of how we can reconstruct a partial solution Sx from a
characteristic Cx: We assumethat at tree node y, we have a partial solu-
tion Sy for Cy (which is the characteristic from which Cx was computed).
We locate in Sy the two bagsthat correspond to the splits performedto get
from Cy to Cx, duplicate thosebagsand insert v into the rangeof bagsthat
correspond to the incremented utilization values. This yields a path decom-
position Sx of Gx; it has width at most `, which completesthe induction
argument for correctness.

Now we start from somepartial solution Sx at x and prove that the com-
bination algorithm computesa characteristic C0

x that subsumesthe charac-
teristic Cx of Sx. Weassumethat in Sx, consecutivebagsdi®erin exactly one
vertex. Let Sy be the restriction of Sx to Gy; by the induction hypothesis,we
know that at tree node y, either the characteristic Cy of Sy or someC0

y with
C0

y 4 Cy is computed. For preliminary characteristics,we had a one-to-one
correspondencebetweenbagsand utilization values,so that inserting v into
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align

τ (·) τ (·)
<<

τ (·)

〈3,2,3, 4,4,5〉

〈3, 2,3,4,4,5〉

〈3, 2,5〉

〈3,2,3,4〉,

〈3,2〉,

〈3,2〉,

〈5,5,6〉

〈3,4,5,5,6〉

〈3,6〉

insert v

insert v

insert v

Figure 15: Moving misalignedinsertion limits. The ¯gure shows utilization
sequencesof a solution and the correspondingT -sequenceof its characteristic.
Note that the sequenceelement at the split position is repeated, and that
the T -sequencefrom Cy was split into two T -sequencesin ~Cx.

a partial solution had a counterpart in adding it to a characteristic and vice
versa. For the ¯nal characteristic, we have to specify what happens if the
utilization valueof a boundary bagof the rangeof v in Sy is eliminated in Cy:
We changein Sy the rangeof v by moving in Sy any \misaligned" insertion
limit to the bag that corresponds to the next lower value in the compressed
utilization sequence(Figure 15). This results in splits whereon both sides,
the utilization sequenceis not greater than the corresponding sequenceat
the old split position. Inserting v into the aligned rangeyields a partial so-
lution ~Sx. For its characteristic ~Cx, we have ~Cx 4 Cx and on input Cy, the
combination algorithm does ¯nd ~Cx (Figure 16). If Cy is produced at tree
node y, we are done; in general, however, merely a characteristic C0

y with
C0

y 4 Cy is computed at y. SinceC0
y 4 Cy, we can expand the compressed

utilization sequencesin C0
y = 〈( ¹Bj, τj)〉1· j· m′ and Cy = 〈( ¹Bj, σj)〉1· j· m′ so

that for all j, we have τ ¤
j ≤ σ¤

j . Adding v to Cy inducesa way of adding v
to the expansionof Cy and henceto the expansionof C0

y; adding v to the
expansionof C0

y inducesa way of adding v to C0
y, yielding a characteristic

C0
x with C0

x 4 ~Cx 4 Cx. This concludesthe completenessproof for the
Introduce-node combination operation.

Forget Nodes

Forget nodescauselittle trouble. Let x be a Forget node with child y, and
let v be the forgotten vertex. The combination operation for ¯nal character-
istics is a straightforward extensionfrom the sameprocedurefor preliminary
characteristics: We transform every input Cy to an output Cx
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Sx Cx < ~Cx
~Sx

has chr. has chr.

misalignedway
of adding v to Sy

aligned way of
adding v to Sy

way of adding
v to Cy

induces induces

align
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Figure 16: Outline of showing how for Sx with characteristic Cx, a ~Cx with
~Cx 4 Cx is found that gets computed from characteristic Cy. Sy is the
restriction of Sx to Gy and Cy is the characteristic of Sy.

(1) by removing v from the reducedbag sequence,

(2) removing the two repeatedbags,

(3) concatenatingthe corresponding compressedutilization sequences,

(4) and recompressingthem.

For Cy = 〈( ¹Bj, τj)〉1· j· m′ wherev is in the bagsq through q0, Cx takes the
form

Cx = 〈 ( ¹B1, τ1), . . . , ( ¹Bq¡ 2, τq¡ 2),
( ¹Bq¡ 1, τ (τq¡ 1 ◦ τq)) , beginning,
( ¹Bq+1 \ {v}, τq+1), . . . , ( ¹Bq′¡ 1 \ {v}, τq′¡ 1), interior,
( ¹Bq′+1, τ (τq′ ◦ τq′+1)) , end of v's range
( ¹Bq′+2, τq′+2), . . . , ( ¹Bm′ , τm′) 〉

where ◦ stands for sequenceconcatenationand τ (·) is the projection to T .
Note that due to the normalization, ¹Bq¡ 1 = ¹Bq \ {v} and ¹Bq′ \ {v} = ¹Bq′+1.
Now take any Cx produced at x from Cy at y. By induction, there is a
partial solution at y with characteristic Cy. Since Gx = Gy, this partial
solution is also a partial solution at x that has characteristic Cx. Thus we
have shown that the combination is correct; completenessrelies on the fact
that for arbitrary utilization sequencesα, β, γ, δ we have

α 4 β and γ 4 δ =⇒ τ (α ◦ γ) 4 τ (β ◦ δ). (∗)
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Let Sx be the partial solution for which wewant to show that a C0
x at most as

great asthe characteristicCx of Sx is computed. Again, the restriction Sy to
Gy is just Sx itself; for Sy = Sx with characteristicCy, we know by induction
that a characteristic C0

y with C0
y 4 Cy is found at y. \F orgetting" v from

both C0
y and Cy yields someC0

x and the Cx of Sx; by (∗), we have C0
x 4 Cx,

which provesthe completenessof the Forget-node combination procedure.

Join Nodes

Finally, let us considerJoin nodes. As usual, we denotethe Join node by x
and its two children by y and z. With preliminary characteristics,we could
achieve completenesseven though we only mergedcharacteristicsCy and Cz

with the samereducedbag sequence.Sincepreliminary characteristicsdi®er
from ¯nal characteristicsonly in the compressionof the utilization sequences,
we maintain this restriction. Accordingly, we merely need to specify how
the T -sequencesof Cy and Cz can be added to re°ect the bag sizesof a
merged partial solution at x. The degreeof freedom we have in merging
partial solutionsSy and Sz is repeating bags;the corresponding repetition of
utilization sequencesmapsutilization sequencesα to expansionsα¤. Merging
two bags of Sy and Sz is re°ected in the utilization by adding their sizes
without counting sharedverticestwice; mergingutilization sequencesαj and
βj associated with bag ¹Bj in all possibleways yields the sequences

(αj ⊕ βj) − | ¹Bj| =
©¡

α¤
j + β¤

j

¢
− | ¹Bj| : α¤

j , β
¤
j same-lengthexpansions

ª
.

The utilization sequencesin Cy and Cz are compressedand the utilization
sequencesof Cx must be from T as well. In general, the sum σ ⊕ τ of
T -sequencescontains elements that are not from T , but applying the com-
pressionoperation τ (·) to all elements of σ ⊕ τ appears to be a reasonable
approach to produce compressedsequencesfor characteristics at x. Thus,
from Cy = 〈( ¹Bj, σj)〉1· j· m′ and Cz = 〈( ¹Bj, τj)〉1· j· m′, we let the algorithm
producethe characteristics

Cx = 〈( ¹Bj, ρj)〉1· j· m′ with ρj ∈ τ
¡
(σj ⊕ τj) − | ¹Bj|

¢
for 1≤ j ≤ m0. (∗∗)

Of course,every combination of choosingthe ρj givesrise to oneCx, and all
Cx with maxρj > `+ 1 for any j are weededout. To convince ourselvesthat
for a Cx thus computed,we can ¯nd a matching partial solution Sx, we rely
oncemoreon the induction hypothesisthat partial solutionsSy on Gy andSz

on Gz with characteristicsCy and Cz exist. We derive instructions from Cx,
Cy, and Cz on how to mergeSy and Sz: Let αj and βj be the uncompressed
utilization sequencesof Sy and Sz, so σj = τ (αj) and τj = τ (βj). Since
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σj ³ αj and τj ³ βj, we can choose expansionsσ¤
j and τ ¤

j that satisfy
σ¤

j ≥ αj and τ ¤
j ≥ βj. In σ¤

j , we can identify each value in the sequencewith
a bag of Sy of at most that size; the sameholds for τ ¤

j and Sz. By (∗∗),
we know that ρj originates from particular expansionsσ+

j and τ+j of σj and
τj with ρj = τ (σ+

j + τ+j − | ¹Bj|); we would like to translate theseexpansion
steps to expansionsof σ¤

j and τ ¤
j , becauseoperations on the latter have a

counterpart in operations on bagsof Sy and Sz. Thereforewe computeσ¤+
j

as in Figure 17 by repeating the expandedrangesof σ¤
j just as the elements

σj

induces
σ+

j

σ¤
j

σ¤+
j

Figure 17: Imitating the sum expansionof σj with σ¤
j .

of σj were repeated in producing σ+
j . By the samemeans,we expand τ ¤

j to
τ ¤+
j using the expansionfrom τj to τ+j as a model. Then we have

τ
¡
σ¤+

j + τ ¤+
j − | ¹Bj|

¢
= ρj,

which meansthat if we can construct a partial solution at x with utilization
sequencesσ¤+

j + τ ¤+
j − | ¹Bj|, we have accomplishedour goal. Through the

sameexpansionsthat take the σ¤
j to σ¤+

j , weexpandSy to S+
y with utilization

sequencesα+
j satisfying α+

j ≤ σ¤+
j . By the samemeans,we obtain S+

z with
utilization sequencesβ+

j , whereβ+
j ≤ τ ¤+

j . Merging S+
y and S+

z bag by bag,
we get a path decomposition ~Sx of Gx with utilization sequences

γj = α+
j + β+

j − | ¹Bj| ≤ σ¤+
j + τ ¤+

j − | ¹Bj|.

Clearly, we have nearly obtained the desiredresult|pro ving the existenceof
a partial solution Sx with characteristicCx|but wehave to bea little careful
in concludingthe argument. Looking closely, we seethat sofar we have only
proved that the sequences〈σ¤+

j + τ ¤+
j − | ¹Bj|〉1· j· m′ dominate the utilization

sequencesof ~Sx; however, someof the compressedutilization sequencesτ (γj)
might be strictly smaller than the corresponding ρj of Cx. To obtain an
Sx with utilization sequencesσ¤+

j + τ ¤+
j − | ¹Bj|, we enlargebags in ~Sx that

are too small by taking verticesfrom larger neighboring bags. The resulting
Sx has characteristic Cx becauseit has the right reducedbag sequenceand
compressedutilization sequencesρj = τ (σ¤+

j + τ ¤+
j − | ¹Bj|).

To recapitulate: we expand the compressedutilization sequencesof Cy

and Cz to dominate the actual utilization sequencesof Sy and Sz, and then
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expandthem further to re°ect the way the compressedutilization sequences
of Cx wereconstructed. Theseexpansionstell us how the bagsof Sy and Sz

have to be repeatedto producea Sx with the given characteristic Cx.
To prove the completenessof the Join-node combination procedure,we

start from a partial solution Sx on Gx and show that the characteristicCx of
Sx or a characteristic C0

x of somebetter partial solution S0
x is computed. By

the now familiar reasoning,we de¯ne Sy and Sz to be the restrictions of Sx

to Gy and Gz and let Cy and Cz be the characteristicsof Sy and Sz; by the
induction hypothesis,the tree nodesy and z producecharacteristicsC0

y and
C0

z with C0
y 4 Cy and C0

z 4 Cz. Our task is to exhibit a C0
x that on the one

hand is among the output of combining C0
y and C0

z, and on the other hand
satis¯es C0

x 4 Cx. Writing C0
y = 〈( ¹Bj, σj)〉1· j· m′ and C0

z = 〈( ¹Bj, τj)〉1· j· m′

(Cy andCz, and henceC0
y andC0

z, must havethe samereducedbagsequence),
we know that there are, for each j, expansionsσ¤

j and τ ¤
j so that σ¤

j ≤ αj

and τ ¤
j ≤ βj, whereαj and βj are the uncompressedutilization sequencesof

Sy and Sz. SinceSy and Sz are both restrictions of Sx, they have the same
number of bags;henceαj and βj have the samelength, and we can add σ¤

j

and τ ¤
j element by element. De¯ning

ρj = τ
¡
σ¤

j + τ ¤
j − | ¹Bj|

¢

then will do the job; in other words, C0
x := 〈( ¹Bj, ρj)〉1· j· m′ will turn out

to be a characteristic at x that doesget computedby our algorithm and for
which C0

x 4 Cx holds. When werecall that in the combination algorithm, the
candidatesfor the j-th combination sequencecomefrom τ ((σj ⊕ τj) − | ¹Bj|),
we seeimmediately that our C0

x will be producedas an intermediate result.
It might get rejected if its maximum utilization exceeds̀ + 1, so proving
C0

x 4 Cx will not only establishthat C0
x is a su±cient surrogatefor Cx, but

also serves to bound the maximum of C0
x. Looking at how Sx results from

mergingSy andSz, we seethat the j-th uncompressedutilization sequenceof
Sx is αj + βj−| ¹Bj|, which is lower boundedby σ¤

j + τ ¤
j −| ¹Bj|. The compression

step|pro jecting to T |preserv esthis inequality, i.e.,

σ¤
j + τ ¤

j − | ¹Bj| ≤ αj + βj − | ¹Bj|
=⇒ τ

¡
σ¤

j + τ ¤
j − | ¹Bj|

¢
4 τ

¡
αj + βj − | ¹Bj|

¢
,

therefore ρj is smaller than the corresponding compressedutilization se-
quenceof Sx, or C0

x 4 Cx. As an aside,note that from the correctnessproof
above follows that the ominous\b etter" partial solution with characteristic
C0

x really exists.
This concludesour description of the [BK96] algorithm for computing

path decompositions of graphs of bounded treewidth. Before we re¯ne the
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analysisand discussour implementation, a few remarkson the construction
are in order:

Solutions can be computed by recursingon the tree and combining partial
solutions of the children by following the correctnessproofs. To every
characteristicat the root, a solution with this or a smallercharacteristic
can be found; nonetheless,enumerating all path decompositions given
all characteristicsat the root requiresfurther e®ort.

No Solution will be found when, at any tree node, no characteristic is com-
puted. By the completenessof the combination algorithms, this implies
that the graph doesnot have a path decomposition of width `.

Simplicit y seemsto be lacking in the overall construction of the algorithm.
However, we have argued in several places that the present level of
complexity cannotbeavoidedin interfacingto the tree-automatontech-
nique: The reducedbag sequenceis necessaryto determinethe ways a
partial solution can be extendedand by Theorem19, further compres-
sion of the utilization sequencesis impossible.

3.6 Analyzing the Algorithm

How many ¯nal characteristics can there be? A characteristic consistsof
a reducedbag sequenceand a T`-sequencefor each reducedbag; we know
exactly how many T`-sequencesthere are, but our earlier approximation of
the number of reducedbag sequences(on page 34) was rather coarse. To
re¯ne it, we recall that consecutive bags B̂i and B̂i+1 of a normalized path
decomposition Sx = 〈B̂i〉1· i· m of the subgraph Gx at tree node x di®er
in exactly one vertex. So do any reducedbags ¹Bj and ¹Bj+1, which result
from restricting the path decomposition to the bag Bx of tree node x and
removing consecutiveequalsets. Wedetermineby induction the number rk of
reducedbagsequencesin which exactly k di®erent verticesoccurand in which
adjacent bagsdi®er in exactly onevertex. For k = 0, there is onesequence,
which has length 1 and consistsof the empty set, so r0 = 1. For k > 0, we
construct all sequencesfrom the sequenceswith k − 1 vertices. Thesehave
length sk¡ 1 = 2(k−1) + 3, and there are

¡
sk−1
2

¢
+ sk¡ 1 = 1

2
(s2k¡ 1 + sk¡ 1) ways

to choosethe subrangefor the k-th vertex, giving

rk =
1
2

(s2k¡ 1 + sk¡ 1)rk¡ 1 =
1√
π

4k k! ¡
µ
k +

1
2

¶

55



where¡( ·) is Euler's gammafunction, which generalizesthe factorial function
to arbitrary real arguments. The number Rk of reducedbag sequencesover
a set of k + 1 ¯xed verticesthen is

Rk =
k+1X

i=0

µ
k + 1

i

¶
· ri

Given a tree decomposition of width k and a desired pathwidth of `, the
number of di®erent characteristics can be up to (T` is the number of T`-
sequences)

Ck,` ≤
k+1X

i=0

µ
k + 1

i

¶
· ri · T`

si

=
k+1X

i=0

µ
k + 1

i

¶ µ
1√
π

4i i! ¡
µ
i +

1
2

¶¶ µ
32
3

4` − 2
3

¶ 2i+3

=
k+1X

i=0

µ
k + 1

i

¶
· 2Θ(i log i) · 2Θ(i¢̀ )

= 2Θ(k log k+k¢̀ ).

Due to the requirement that consecutive bags di®er in exactly one vertex,
the di®erencebetween the last and the ¯rst element of the T`-sequencesof
consecutive reducedbagsis 1; to get an asymptotic lower bound, we observe
that if we chooseevery secondT`-sequenceat will, the gapscanbe ¯lled with
simpleT`-sequences;hence

Ck,` ≥
k+1X

i=0

µ
k + 1

i

¶
· ri · T`

dsi/2e = 2Θ(k log k+k¢̀ ).

Altogether, we obtain Ck,` = 2Θ(k log k+k¢̀ ). At every tree node, we have
to processat most Ck,` many characteristics, which can be combined using
table lookups in time proportional to the size of characteristics, £( k + `),
so, as promised, the entire algorithm will run in time 2Θ(k log k+k¢̀ ) · O(n) =
O(2poly(k,`) ·n). For a few concretevaluesof k and `, Table1 showshow many
characteristicscanariseat any tree node. The valuesshown do not represent
a looseupper bound|in a totally disconnectedgraph with an arbitrary tree
decomposition of width k, there really areCk,` many characteristicsat every
tree nodewhenwetry to computea path decomposition of width `. However,
to dismissthe algorithm basedon this evidenceas completely impractical is
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` = 1 ` = 2 ` = 3 ` = 4
T1 = 42 T2 = 170 T3 = 682 T4 = 2,730

k = 1 R1 = 9 4.48 · 105 2.95 · 107 1.90 · 109 1.22 · 1011

k = 2 R2 = 112 2.81 · 108 7.52 · 1010 1.94 · 1013 4.99 · 1015

k = 3 R3 = 2,921 3.30 · 1011 3.58 · 1014 3.71 · 1017 3.82 · 1020

k = 4 R4 = 126,966 6.24 · 1014 2.73 · 1018 1.14 · 1022 4.69 · 1025

Table1: Somevaluesof the number of reducedbagsequencesRk, the number
of T`-sequencesT`, and the lower boundon the number of characteristicsCk,`.
The number of verticesin a reducedbag sequenceis k + 1 and the maximum
of the utilization sequencesis at most ` + 1.

premature for two reasons:The degeneratecasejust cited is actually very
easyto handle: if we pipeline the computation, then a single characteristic
at every node will su±ce for ¯nding a characteristic at the root. In gen-
eral, computing characteristics \on demand" improves the running time on
sparsegraphs. Secondly, we already observed that many characteristicsare
redundant becausethey are subsumedby smaller characteristicsof \b etter"
solutions. The e®ectof theseoptimizations will be investigated in the fol-
lowing section.

3.7 The Implementation

We implemented the Bodlaender-Kloks path-decomposition algorithm by
substituting the de¯nition of the characteristic and the combination algo-
rithms into the generictree automaton \template" described in Section2.4.
We preserved the generality of the algorithm by setting up the desiredpath-
width ` as a runtime parameter (as opposedto a compile-time parameter)
just as the input graph and tree decomposition. The width k of the tree
decomposition doesnot occur in the description of the algorithm nor in our
implementation|as a bound on the maximum bag size, it appearsonly in
the analysisof the algorithm. The parts of the resulting program speci¯c to
path decomposition comprisedata structures for

• utilization sequences,

• T -sequences,

• reducedbag sequences,

• characteristicsof path decompositions, and

• partial solutions
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as well as proceduresfor the combination of characteristics and of partial
solutions at the di®erent tree-node types. The functionality of the data
structures and the algorithms usedcloselyfollow the description in the pre-
vious sections. In particular, partial solutions are mergedby imitating the
correctnessproofs.

Integer Sequences

Bag-utilization values (U-sequences)and T -sequencesare implemented as
arrays of integersthat support the following operations(α, β ∈ U , and σ, ρ ∈
T ):

len(®) returns the number of elements in sequenceα.

®[i ] queriesthe ith element of α.

max ® returns the maximum of α; this takestime O(1) as the maximum is
maintained in a variable.

® + c addsa constant c ∈ N to all elements of α.

® © m ¯ computesfor all same-lengthexpansionsα¤, β¤, the pairwise sum
γ = α¤ + β¤, retaining only sumsγ with maxγ ≤ m. Not all expan-
sions are considered,but only those where at each position, either a
new element from α occurs in α¤ or a new element from β occurs in
β¤. The other sums of expansions,especially those of length greater
than len(α) + len(β), are necessarilyexpansionsof smallersums,hence
super°uous for our purpose.The elements of α⊕m β are computedon
demandto allow pipelining with higher-level functions; elimination of
duplicatesdoesnot occur to avoid storing all previoussums.

¿(®) projects α to T using a straightforward quadratic-time algorithm.

¿(® © m ¯ ) projects the sum of U-sequencesto T , thereby discardingdupli-
cates. This is a simplecomposition of the α⊕m β operation, τ (·) and a
set data structure. Merging T -sequencesat Join nodes,i.e., computing

τ ((σj ⊕ ρj) − | ¹Bj|),

can be implemented with the procedurespresented so far if we omit
the elimination of redundant characteristics.

¾ 4 ½ comparestwo T -sequencesand determineswhetherσ and ρ are equal
or incomparableor which of σ and ρ is strictly smaller. The linear-time
algorithm employed originates from an idea by Hagerup[Hag98b].

58



¿¤(® © m ¯ ) supersedesthe τ (α⊕mβ) operation by purging non-minimal T -
sequencesfrom the output. This is achievedby computing the elements
γ ∈ α⊕mβ oneby oneand comparingτ (γ) againstthe list of previously
computed compressedsums. τ (γ) replacesan earlier greater sum, or
is discardedif an earlier smaller sum is found, or is appendedto the
list if it is found to be incomparableto all list elements. Hencethis
operation computesthe minimum number of elements of

τ ((σj ⊕ ρj) − | ¹Bj|)

necessaryto ascertain the completenessof the Join-node combination
algorithm.

Computing Characteristics

The characteristic of a path decomposition of someGx was de¯ned as a list
of reducedbagswith associated compressedutilization sequences.In our im-
plementation, we chosenot to store a list of vertex setsfor the bags;instead
we opted for a more compact representation by giving for each vertex the
number of the ¯rst and the last bag in which it occurs. Accordingly, a char-
acteristic consistsof two lists, oneof length at most |Bx| ≤ k + 1 containing
the vertex intervals and a list with the T -sequences,whoselength equals
the number of bagsin the reducedbag sequence.Although very convenient,
our representation is somewhat lesse±cient for computing solutions from
characteristics than the \implicit" representation given by Bodlaenderand
Kloks.

Introducing new vertices thus meansto add one vertex interval, adjust
the others to re°ect the split, and to increment the T -sequenceswithin the
new range. Forgetting a vertex amounts to deleting the corresponding in-
terval, accommodating the elimination of two bags in the other intervals,
and concatenating two pairs of T -sequences.Merging two characteristics
is performed by ¯rst comparing the lists of intervals|the reducedbag se-
quencesmust coincide|and then outputting all combinations of choosing
oneT -sequencefrom

τ ¤((σj ⊕m ρj) − | ¹Bj|)
for every j and m = k + 1 + | ¹Bj|. For ¯xed input characteristics, all four
combination algorithms produce only incomparablecharacteristics: This is
evident for Start andForgetnodes,which yield only a singlecharacteristic; for
Introducenodes,we ensurethis by never splitting at a sequencemaximum|
it canbe shown that only splits at maxima leadto redundant characteristics.
Characteristicscomputedat Join nodesaremutually incomparableby virtue
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of the sameproperty of the setsτ ¤((σj⊕mρj)−| ¹Bj|). However, in most cases,
the combination algorithm at a tree node is called for multiple combinations
of children characteristics; therefore it may happen that two di®erent input
characteristics lead to the sameoutput or to comparablecharacteristics. In
this event, redundant characteristics get optionally removed by the generic
framework.

Figures 18, 19 and 20 show somedetails of an exemplary path-decom-
position computation. To maintain coherencewith the presentation of the
theory, the characteristics in Figure 20 have beenconverted to lists of pairs
of a bag and a T -sequence;so at the root,

〈(∅,0 1), ({2},2 1 4), (∅,3), ({4},4 2 3), (∅,2 0)〉

represents a reducedbag sequenceof an empty bag, followed by a bag with
the vertex labeled \2", followed by an empty bag, a bag with vertex \4",
and another empty bag. The ¯rst bag has the T -sequence〈0,1〉, the second
〈2,1,4〉, and so on.

Benchmarks

The benchmarks were run on a Sun Enterprise 10000 computer [Cha98],
whereup to eight testscouldbeexecutedsimultaneouslyon asmany 333MHz
Ultra-2 processors,which sharedtwo gigabytes of main memory. The pro-
gramswerewritten in C++ and compiledusing the GNU C++ compiler. De-
tails about the software and the development environment are given in the
appendix.

Our test caseswith a known upper bound on the pathwidth arecreatedas
in Figure 21 by using paths and cacti as \skeletons" for `-tree constructions,
similar to the triangle construction in Chapter 1: We maintain a mapping
betweentree nodesand (` + 1)-cliquesin the growing graph; starting with
an (` + 1)-clique identi¯ed with an arbitrary node of the tree, children of
tree nodesget their counterparts in the graph by inserting one new vertex
and making it adjacent to all vertices of the parent's clique except for one
vertex, which is chosenuniformly at random. Graphs with path skeletons
have pathwidth `: turning the (` + 1)-cliques into bags linked in the or-
der of construction, we get a path decomposition of width `. Furthermore,
these graphs are maximal in the sensethat adding any new edgewill in-
creasethe treewidth and hencethe pathwidth of the graph (Proposition 8).
Graphs generatedfrom cacti have pathwidth at most ` + 1, becausein the
tree decomposition of width `, bagsof inner nodescan be replacedby two
consecutive bagsof size` + 2, yielding a path decomposition of width ` + 1.

From thesegraphs,sparserand lessregular graphsare obtained by delet-
ing edgesat random. The necessarytree decompositions were computed
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using the algorithm from [ACP87], which o®eredacceptableperformancefor
the graphs that the path-decomposition algorithm could handle. Table 2
shows the e®ectof the di®erent optimizations described earlier; Figures 22
to 29 show the performanceof the fastest con¯guration of the ¯nal imple-
mentation. The following observations weremade:

• Memory consumptionrather than running time proved in many cases
to be the limiting factor. This is especially poignant for sparsegraphs.

• Therefore it is of utmost importance to reducethe number of charac-
teristics producedat each tree node (Table 2).

• Figure 23 shows linearly growing worst-caserunning time for a large
number of samples;the experiments appear to indicate a constant of
ca. 30 s/node for ` = 2. As the test casesfrom Table 2 show, the
performanceis often much better. To improve performanceon sparse
graphs,a good heuristic would be to handleeach connectedcomponent
separately.

• As expected,the time for computingsolutionsgrowsfasterthan linearly
(Figure 24); the results are inconclusive as to whether the bound is
quadratical as predicted by theory.

• There is no particular bottleneck in the program(Figure 22); the mem-
ory management would greatly bene¯t from a restriction of the values
of `|e.g., it would then be possible to store entire T`-sequencesin
machine words instead of relying on dynamically allocated arrays.

• For ` = 2, the performanceof the algorithm is acceptable.Beyond that,
practicality is questionable(Figure 29); it is likely that the Bodlaender-
Kloks algorithm cannot compete with the algorithms for the special
cases̀ = 2, ` = 3, and ` = 4, such as the oneby Sanders[San96].
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Figure 18: Graph cactus2t-03.gml and the width-2 tree decomposition that
will be usedin the following examples.
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Figure 19: A tree decomposition of graph cactus2t-03.gml annotated with
the number of characteristics computed at every node. This tree decom-
position is the result of converting the tree decomposition from Figure 18
to the Start-Introduce-Forget-Join-node format; the bold numbers indicate
bagswherethe algorithm did not computea full set of characteristicsor did
not notice that it did.
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Figure 20: One path of the tree decomposition of cactus2t-03.gml an-
notated by the characteristics that lead to a solution (seethe remarks on
page60)
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Figure 21: Generating test casesby \blo wing up" paths and cacti. Simple
treesguidea 2-treeconstruction, yielding graphswith predictableboundson
the pathwidth.
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test 1 test 2 test 3 test 4 test 5 test 6 test 7 test 8
¯nal, no compiler 4.1s 3.9s 3.3s 5.7s 327.5s 106.2s 3.0s 5251.9s

optimization 6 MB 5 MB 6 MB 6 MB 34MB 13MB 6 MB 242MB

1.9s 1.5s 1.2s 2.0s 141.9s 56.7s 1.6s 2454.2s¯nal
6 MB 5 MB 5 MB 6 MB 34MB 13MB 6 MB 242MB

no sum 2.0s 1.5s 1.2s 2.0s 138.6s 51.6s 1.7s 4146.0s
optimization 6 MB 5 MB 5 MB 6 MB 36MB 14MB 6 MB 328MB

no split 2.8s 1.6s 1.5s 2.4s 161.4s 65.5s 1.7s 4185.9s
optimization 6 MB 5 MB 5 MB 6 MB 36MB 14MB 6 MB 340MB

no redundancy 8.4s 5.0s 8.0s 62.3s 776.0s 1278.5s 12.1s 4483.7s
elimination 15MB 8 MB 12MB 33MB F 1027MB 80MB 22MB F 1028MB

I 75hno caching
179MB

N N N N N N N

no redundancyelim., 9.4s 5.0s 8.1s 64.1s 765.8s 3373.0s 19.2s 5720.4s
no sum opt. 17MB 8 MB 13MB 39MB F 1027MB 165MB 33MB F 1028MB

F | tests that could not be completeddue to memory exhaustion
N | tests that werenot conducted

I | tests that were interrupted

T
able

2:
T

he
e®

ectofthe
various

optim
izations.
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test tree decomposition requested
case

graph
tree width pathwidth

1 2 2

2 3

3 3

4

3

3

5 2 2

6 2 2

7 2

8

2

3

Table 3: The test casesusedfor evaluating the optimizations.
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Flat profile:

Each sample counts as 0.01 seconds.
% self
time seconds calls name
49.32 269.35 __mcount_internal
11.10 60.62 mcount
2.68 14.66 9743318 chunk_free
2.20 11.99 9754826 chunk_alloc
0.96 5.24 9743318 cfree
0.95 5.17 5439583 gen_array::clear
0.85 4.63 9754826 malloc
0.69 3.79 16714204 leda__access<pdc::chrctr::vinfo>
0.69 3.75 4594919 memory_manager::allocate_vector
0.66 3.60 27216762 dlist::entry
0.56 3.07 1884714 gen_array::gen_array
0.53 2.88 4594919 memory_manager::deallocate_vector
0.52 2.85 13229150 leda_array<char>::clear_entry
0.52 2.83 24739802 leda_access<char>
0.47 2.59 1798807 gen_array::init
0.47 2.58 3367102 lex_compare<leda_list<pdc::chrctr::vinfo> >
0.47 2.55 11168570 leda_array<char>::operator[]
0.47 2.54 7054689 compare
0.43 2.37 ___builtin_new
0.43 2.36 8928161 iseq::operator[]
0.43 2.34 10159550 dlist::first_item
0.42 2.31 8152263 ref<pdc::chrctr>::operator*
0.42 2.30 5883299 dlist::clear
0.41 2.23 14119442 leda_list<pdc::chrctr::vinfo>::contents
0.39 2.15 8422410 leda_create<char>
0.39 2.13 14413062 leda__access<char>
0.39 2.13 4474456 gen_array::~gen_array
0.37 2.01 14119442 leda_list<pdc::chrctr::vinfo>::inf
0.36 1.99 5687167 dlist::length
0.35 1.90 4704435 ref<pdc::chrctr>::discard
0.34 1.86 2124187 dlist::append
0.34 1.85 8928161 leda_array<char>::operator[]
0.33 1.81 11519 tree_automaton<pdc>::ta_join::iter::next1

Figure 22: Excerpt from a pro¯le of test case6 by the gprof utilit y. The
¯rst two entries indicate that pro¯ling incurred a 60%performancepenalty;
they are followed by the memory management routines, and low-level LEDA

functions; from the algorithm proper, only somecomparisonfunction, and
the genericJoin operation show up in this list. Even though similar results
werefound with other test cases,these¯gures are to be treated with caution;
e.g., suppressingthe inlining functions may have signi¯cantly distorted the
distribution of CPU cycles.
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Figure 23: Running time against growing graph size. For every n, 32 max-
imal pathwidth-2 graphs were generatedby using a path as skeleton. Af-
ter randomly removing multiples of four edges,the time for computing all
characteristics was taken, always using the tree decomposition that derives
naturally from the construction of the maximal graph. The diagram above
shows for each n the greatestrunning time encountered.
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Figure 24: For the sameexperiment as in Figure 23, this ¯gure shows the
maximum time for computing the ¯rst characteristic at the root (solid line)
and for computing a solution (dashedline) for each n.
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Figure 25: Maximal number of characteristics at any tree node, plotted
against growing n (sameexperiment as in Figures23 and 24).

Figure 26: The three maximal pathwidth-3 graphsusedfor investigating the
in°uence of graph density on the running time, and the samegraphs with
ten edgesremoved at random. The results of this experiment are shown in
Figures27 and 28.
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Figure 27: Running time against density of graph: From each of the three
graphsof Figure 26, one edgeafter the other was removed in random order
and after each deletion, a path decomposition was computed,using the tree
decomposition of the original graph. In the diagram, the number of deleted
edgesis plotted against the time (in seconds)to compute all characteristics
at the root node. The number of characteristicsgrows roughly exponentially
with the number of deletededges.
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Figure 28: Running time againstdensity of graph: For the sameexperiment
asin Figure 27, the time for computing the ¯rst characteristicat the root and
the corresponding solution is shown. This benchmark remainsinconclusive.
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k = ` = 2 k = ` = 3
0.28 s 2.17 s

k = ` = 4 k = ` = 5
1267.93 s aborted after 127h

Figure 29: Running time for ¯xed n and growing k and `.
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Chapter4

Tree-DecompositionAlgorithms

In this chapter, we reviewalgorithms for computing tree decompositions. As
input, thesealgorithms takea graphG andan integerk. If G hastreewidth at
mostk, they computea treedecomposition of G of width at mostk; otherwise
they correctly state that G has treewidth greater than k. Building on such
a procedure, it is easy to ¯nd a tree decomposition of optimal width, for
example,by calling the procedurewith k = 1,2, . . . until a treedecomposition
is found. Using a tree-decomposition algorithm with time bound O(g(k) ·
nc)|i.e., onethat exhibits the property of ¯xed-parameter tractabilit y|and
imposingan upper bound on the treewidth, the running time for ¯nding the
treewidth is O(nc).

While discussingthe computation of tree decompositions,we will assume
that the input graph G is connected;for graphs with more than one con-
nectedcomponent, tree decompositionsof the individual components can be
merged by linking the trees at arbitrary tree nodes. Section 4.1 provides
an important subroutine for many tree-decomposition algorithms. In Sec-
tion 4.2, we present tree-decomposition algorithms that rely on computing
separatorsand which culminate in Reed'sO(n logn) algorithm [Ree92]. Sec-
tion 4.3 is devoted to a di®erent approach, by which Bodlaender [Bod96a]
succeededin devisinga linear-time algorithm for computing minimum-width
tree decompositions of graphs of bounded treewidth. In this chapter, we
maintain a theoretical perspective and lay the groundwork for Chapters 5
and 6, wherewe discussissuesof practicality.

4.1 Shrinking Tree Decompositions

We present in this section an algorithm for shrinking tree decompositions:
The algorithm takesasinput a graphG, a linear-sizetreedecomposition (T =
(X,F ), {Bx}x2X) of width k, and an integer ` < k. It checks whether G has
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treewidth ` and if so,computesa tree decomposition of width `. The running
time of the algorithm is O(2poly(k,`) · n), so for ¯xed k, the bound is linear in
the input size. Invented by Bodlaenderand Kloks [BK96], the algorithm is an
essential constituent of Bodlaender'slinear-time algorithm [Bod96a], though
it is also neededfor post-processingthe output of procedures,such as most
of the algorithms presented in Section 4.2, which compute from scratch a
tree decomposition of constant but non-optimal width.

Shrinking tree decompositions is not straightforward. For example, we
cannot turn a tree decomposition of width k into a tree decomposition of
width ` by decomposing large bagslocally and linking the resulting trees|
most of the time, it would not be possibleto join the tree decompositions of
adjacent bags:

�

Nevertheless,the problem ¯ts into the framework from Chapter 2 for solving
problemson graphsof bounded treewidth. By plugging characteristicsand
combination proceduresinto the genericalgorithm, we solve the problem not
somuch by taking a wide tree decomposition asa starting point for a shrink-
ing process,asby using the wide tree decomposition asa guide in computing
a narrow tree decomposition from scratch. The algorithm by Bodlaender
and Kloks can be thought of as an extensionof the path-decomposition al-
gorithm presented in Chapter 3: computing tree decompositions via a tree
automaton is a generalizationof computing path decompositions this way,
and wewill beableto transfer many of the earlier results. From the projected
time bound O(2poly(k,`) ·n), we seethat the running time at each node of the
tree automaton should again be independent of n; therefore the maximum
number of characteristicsat any tree node must not depend on G.

The Characteristic of a Tree Decomposition

Recall that at a tree node x, the characteristic of a path decomposition
〈B̂i〉1· i· m of the subgraphGx wasmadeup of two constituents: the reduced
bag sequence〈 ¹Bj〉1· j· m′ |the projection of 〈B̂i〉1· i· m to the bag Bx at tree
node x, with repeatedbagsremoved|and compressedutilization sequences
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Figure 30: The characteristic of an exemplary tree decomposition. Black
vertices are in Bx, white vertices in Gx \ Bx; the characteristic of the tree
decomposition on the left consistsof the trunk on the right whoseedgesare
annotated with path-decomposition characteristics.

associated with each reducedbag ¹Bj, which convey the essential information
about what was lost in the projection. Likewise,the characteristic of a tree
decomposition Sx = (T̂ = (X̂, F̂ ), {B̂x̂}x̂2 X̂) of graphGx is constructedby re-
stricting Sx to Bx, removing \rep eated" bags,and annotating the restriction
with utilization values. Note that we follow again the convention of marking
components of partial solutionsby a hat (^) and parts of characteristicsby a
bar (¹ ), while leaving objects of the backbonetree decomposition unmarked.

Let Sx = (T̂ = (X̂, F̂ ), {B̂x̂}x̂2 X̂) be a partial solution at tree node x; we
now develop the de¯nition of the tree-decomposition characteristic Cx of Sx.
To simplify the reuseof the path-decomposition procedures,we proceedas
follows to createa (tree-)trunk ¹T to which wecana±x characteristicsof path
decompositions (seeFigure 30). We reduceT̂ to ¹T = ( ¹X, ¹F ) with ¹X ⊆ X̂,

(1) by repeatedlyremoving leavesx̂ for which B̂x̂∩Bx is a subsetof B̂ŷ∩Bx

at the singleneighbor ŷ, and

(2) by removing all nodes x̂ of degreetwo and making their neighbors
adjacent.

The ¯rst reduction rule is necessaryto bound the sizeof ¹T , whereasthe sec-
ond rule removeschains of nodes,which we plan to treat di®erently: Every
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edge¹e = (¹x, ¹y) in ¹T can be associated with the path from ¹x to ¹y in T̂ , and
we de¯ne P̂(x̄,ȳ) = 〈B̂x̄, . . . , B̂ȳ〉 to be the sequenceof the corresponding bags
in the original tree decomposition. For any trunk edge¹e = (¹x, ¹y) ∈ ¹F , P̂ē

is a path decomposition of a subgraph of Gx, and we let ¹Pē be the path-
decomposition characteristic of P̂ē, so ¹Pē = 〈( ¹Bē,j, τē,j)〉1· j· m′ consistsof the
sequence〈B̂x̄ ∩ Bx, . . . , B̂ȳ ∩ Bx〉 with repetitions removed and the corre-
sponding compressedutilization sequences.Labeling the trunk edgeswith
thesepath decompositionscompletesthe construction of the tree decomposi-
tion characteristicCx = ( ¹T = ( ¹X, ¹F ), { ¹Pē}ē2 F̄ ). Note that againwe have the
invariant that inserting the reducedbags into the trunk|i.e., building the
tree of bagsthat results from substituting the reducedbag sequencesfor the
trunk edges|giv es a tree decomposition of bag Bx; furthermore, the path
decompositions at edgesthat sharean endpoint, sharethe last bag and the
last element of the compressedutilization sequenceof the last bag. However,
there is a characteristic in which the trunk ¹T doesnot have any edgeat all|
such a characteristicCx at nodex with a degenerate trunk represents all tree
decompositionsof Gx whereall verticesof Bx occur in somebag: in this and
only this case,reduction rule (2) leavesonly a single ¹x with bag B̂x̄ ⊇ Bx.

How many tree-decomposition characteristics are there? By reduction
rule (1), every bag B̂x̄ of a trunk leaf ¹x contains a vertex from Bx that is in
no bag B̂ȳ of any other trunk node ¹y ∈ ¹X, ¹y 6= ¹x. SinceBx is a bag of the
input tree decomposition and thus contains at most k + 1 vertices,the trunk
¹T can have at most k + 1 leaf nodesand henceat most 2k nodes in total.
Each of the at most 2k − 1 edgescan be labeled with one of 2Θ(k log k+k¢̀ )

characteristicsof path decompositions (Section3.6), implying a bound of

O
³ ¡

2O(k log k+k¢̀ )
¢2k¡ 1

´
= 2O(k2 log k+k2 ¢̀ )

on the number of characteristics and a bound of 2O(k2 log k+k2 ¢̀ ) · n on the
running time S(n, k, `). With a little more e®ort, it can be seenthat the
number of characteristicsis 2Θ(k2 log k+k2 ¢̀ ).

We can easilyextend the partial order 4 from path-decomposition char-
acteristicsto entire characteristicsof tree decompositions: for tree-decompo-
sition characteristicsCx and C0

x shall hold Cx 4 C0
x if they have the same

trunk, soCx = ( ¹T = ( ¹X, ¹F ), { ¹Pē}ē2 F̄ ) and C0
x = ( ¹T = ( ¹X, ¹F ), { ¹P 0

ē}ē2 F̄ ) and
if ¹Pē 4 ¹P 0

ē for all trunk edges¹e ∈ ¹F . Sincewe areusingT -sequencesinstead
of uncompressedutilization sequences,we aim again for the weaker kind of
completeness,where for each partial solution Sx with characteristic Cx, we
only require that a characteristic C0

x of a better solution S0
x with C0

x 4 Cx

is computed. This also permits us to transfer the elimination of redundant
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characteristics from the path-decomposition caseto the tree-decomposition
case.

Start Nodes

The combination algorithms are extensionsof the corresponding procedures
for Pathwidth, except for the Start-node combination algorithm. At a
Start node x with Bx = {v}, partial solutions can have only the degenerate
trunk ¹T = ({¹x}, ∅), so that Cx = ( ¹T , ∅) is the only characteristic generated
at x.

Intro duce Nodes

At Introduce nodesx with child y and introduced vertex v, the input is a
characteristic Cy = ( ¹T , { ¹Pē}) of a partial solution Sy at node y (i.e., Sy is
a tree decomposition of Gy) and we are asked to computeall characteristics
Cx that stand for a partial solution Sx at x, where Sx is an extension of
Sy by the introduced vertex v. Essentially , the combination procedurewill
construct all characteristicsCx that meet the utilization bound of ` + 1 and
which reduceto Cy when v is removed. However, it takesa little struggle to
make this explicit.

When we manipulate a path-decomposition characteristic ¹P(x̄,ȳ) that is
part of a tree-decomposition characteristic Cx of a partial solution Sx, i.e.,

Sx = (T̂ = (X̂, F̂ ), {B̂x̂}x̂2 X̂),

Cx = ( ¹T = ( ¹X, ¹F ), { ¹Pē}ē2 F̄ ),
¹P(x̄,ȳ) = 〈( ¹B(x̄,ȳ),j , τ(x̄,ȳ),j)〉1· j· m′ ,

we must bear in mind that someof the reducedbags ¹B(x̄,ȳ),j may originate
from a subsequenceof P̂(x̄,ȳ) = 〈B̂x̄, . . . , B̂ȳ〉 containing bagsB̂ẑ where ẑ has
in T̂ a branch that gets eliminated by the reduction rules (1) and (2). In
Figure 30, the ¯rst inner bag from the top at the long edge is an exam-
ple of such a ẑ. Which operations on the partial solution Sx correspond to
inserting v into ¹P(x̄,ȳ) using the Introduce-node combination algorithm for
path-decomposition characteristics? Let ¹P 0

(x̄,ȳ) denote the result of such an
insertion; the correctnessproof of the algorithm gave instructions on how to
repeat bagsin P̂(x̄,ȳ) and whereto add v sothat the resulting P̂ 0

(x̄,ȳ) haschar-
acteristic ¹P 0

(x̄,ȳ). Sofar sogood, but what happensto the branchesthat were
cut o®in deriving the characteristicCx from Sx? We just attach them to ex-
actly oneof the (possible)repetitions of ẑ, thus preservingthe validit y of the
tree decomposition with respect to verticesother than v. Similarly, merging
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two path-decomposition characteristics ¹P (1)
(x̄,ȳ) and ¹P (2)

(x̄,ȳ) with the Join-node
combination algorithm inducesan equivalent operation on the correspond-
ing P̂

(1)
(x̄,ȳ) and P̂

(2)
(x̄,ȳ), and we can reattach branchesto the result without any

problem.
We begin the discussionof the Introduce-node combination algorithm for

tree-decomposition characteristicswith the computation of characteristicsCx

that have the sametrunk asCy. If Cy hasa degeneratetrunk without edges,
Cx := Cy is a valid characteristicat x|meaning \all verticesof Bx in a bagin
somepartial solution at x"|if |Bx| ≤ `+ 1. If the trunk of Cy hasat leastone
edge,we check to which reducedbagsin path-decomposition characteristics
¹Pē the new vertex v can be added: all edgesbetweenv and other vertices
of Bx have to be covered, the bagscontaining v must be connected,and the
utilization limit ` + 1 must be respected. For each such legal way of adding
v, the compressedutilization sequencesare split and updated accordingly.
Thus we get all characteristicsCx wherethe trunk coincideswith the trunk
of Cy; correctnessis immediate sincepaths in someSy behave just like path
decompositions and, as argued above, truncated branches do not pose a
problem.

To obtain the characteristicsCx whosetrunks di®erfrom Cy, observe that
the trunk only changeswhenremoving v from Cx leadsto a trunk leaf whose
bag is a subset of the neighbor's bag|this can only happen if v is in the
bag of the leaf, but in no other bag. Conversely, assumethat all edgesof v
are covered by putting it in a single reducedbag ¹B from any reducedbag
sequencein Cy. We createall possibledecreasingchains of bags

〈 ¹B, ¹B \ {u1}, ¹B \ {u1, u2}, . . . , ¹B \ {u1, . . . , ur¡ 1}, ¹B \ {u1, . . . , ur}〉

that start with ¹B andendwith somesubset ¹B\{u1, . . . , ur} with all neighbors
of v in Bx; inserting v into the last bag of such a chain,

〈 ¹B, ¹B \ {u1}, . . . , ¹B \ {u1, . . . , ur¡ 1}, ( ¹B \ {u1, . . . , ur}) ∪ {v}〉,

makesreduction rule (1) inapplicable, so that we can extend the trunk by a
new leaf ¹y, and associate the edge¹e from ¹y to its neighbor with the path-
decomposition characteristic ¹Pē formedby the bagsof the chain and arbitrary
T -sequencesτj with min τj ≥ | ¹B \ {u1, . . . , uj}| for 0 ≤ j < r, min τr ≥
| ¹B \ {u1, . . . , ur}) ∪ {v}|, and maxτj ≤ ` + 1 for 0≤ j ≤ r:

¹Pē = 〈( ¹B, τ0), . . . , ( ¹B \ {u1, . . . , ur}) ∪ {v}, τr)〉.

If ¹B corresponds to a node ¹x in the trunk (i.e., it is a last or ¯rst bag of a
reducedbag sequence),we make ¹y adjacent to ¹x, i.e., ¹e = (¹x, ¹y). Otherwise,
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¹B corresponds in someT̂ to a node x̂ that was removed by reduction rule
(2); we put a new ¹x corresponding to x̂ into the trunk; then we split the
T -sequenceof ¹B at all possible places to create two path-decomposition
characteristics,which go with the two edgesthat replacethe old trunk edge
\through x̂". We attach ¹Pē to e := ( ¹x, ¹y) as beforeand have syntactically a
characteristic Cx. If Cy hasa degeneratetrunk, we createcharacteristicsCx

by setting ¹B = By and applying the sameconstruction.
Givensuch aCx anda partial solutionSy at y with the input characteristic

Cy, we can easily identify the bag in Sy that corresponds to ¹B and add the
samechain to it. Sincein Gx, v canhaveonly edgesto other verticesfrom Bx

(and by Lemma14not from Gx\Bx), all edgesarecoveredand v only occurs
in a connectedsubgraphof the tree decomposition. Such a Sx evidently has
characteristicCx, hencethe algorithm behavescorrectly in the caseof a trunk
extension.

Let us addresscompleteness:given a partial solution Sx, which haschar-
acteristic Cx, we have to show that a characteristic C0

x with C0
x 4 Cx is

computed by the presented procedure. By the induction hypothesis,we get
a characteristic C0

y from y that is smaller than the characteristic Cy of the
restriction Sy of Sx. Inasmuch as C0

y 4 Cy, they are comparableand hence
have the sametrunk and reducedbag sequences.So if we can show that
v can be added to Cy yielding Cx, then v can be inserted into C0

y in the
sameway|splits of T -sequencesσ in Cy are imitated by the corresponding
T -sequenceτ in C0

y by ¯rst building the common-lengthexpansionsσ¤ and
τ ¤ with τ ¤ ≤ σ¤, and splitting τ ¤ at the, say, leftmost position where the
split element from σ occursin σ¤. Obviously, the C0

x constructedthis way is
smaller than Cx.

We concludethe proof of completenessby showing that on input Cy, the
combination algorithm indeedoutputs Cx. Going from Sy to Sx, wherecanv
appear? If Cx andCy have the sametrunk, the completenessof the introduce
operation for path-decomposition characteristics guaranteesus that the T -
sequencesof Cx or smalleronesreally are computed. If the trunks of Cx and
Cy di®er, then v can only occur in the path-decomposition characteristic of
a singlenew edgein the trunk; the combination algorithm ¯nds all possible
nodes in the trunk of Cy to which the new node can be joined, and labels
the new edgewith all possiblepath-decomposition characteristics.

Forget Nodes

Let x be a Forget node with child y and forgotten vertex v. Each character-
istic Cy at y gives rise to one characteristic Cx at x: v is removed from all
path-decomposition characteristicsand then the reduction rules (1) and (2)
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areappliedagainto shrink the trunk wherenecessary, concatenatingreduced
bag sequencesand concatenatingand recompressingthe T -sequencesof the
boundary bags. For every such Cx, there is a Cy from which it originates
and by the induction hypothesis, there is a partial solution Sy at y with
characteristic Cy. Clearly, Sx := Sy hasat x characteristic Cx, which proves
correctness. Given an Sx with characteristic Cx, we show that a C0

x with
C0

x 4 Cx is computed: At y, Sy := Sx is a partial solution with character-
istic Cy. By induction, a C0

y with C0
y 4 Cy is found; sinceC0

y and Cy are
comparable,they have the sametrunk and the samereducedbag sequences.
So \forgetting" v from both C0

y and Cy results in someC0
x and the charac-

teristic Cx of Sx. They satisfy C0
x 4 Cx, and sinceC0

x is the output of the
combination algorithm on input C0

y, completenessis proved.

Join Nodes

MergingcharacteristicsCy andCz at Join nodex with children y and z canbe
largely reducedto mergeoperationson path-decomposition characteristics. If
Cy and Cz di®er in their trunks or reducedbag sequences,no characteristic
Cx is produced. Otherwise, the path decompositions at each edgeof the
trunk arecombined individually and every way of choosingonemergedpath-
decomposition characteristic at each edgeyields onecharacteristicCx at x|
the trunk of Cx is that of Cy and Cz. If Cy and Cz have a degeneratetrunk,
the characteristic with a degeneratetrunk is producedat x if |Bx| ≤ ` + 1.

The correctnessand completenessproofs pro¯t from the fact that pairs
of path decompositions are combined independently. Given a characteristic
Cx computed at x, we construct a solution Sx with this characteristic: By
induction, there exist partial solutions Sy and Sz with characteristics Cy

and Cz, respectively. The paths corresponding to path decompositions ¹Pē at
trunk edges¹e are mergedlike path decompositions,except that in repeating
bags,branchesattached in Gy \By or Gz \Bz arenot repeated. The resulting
Sx is a partial solution at x and hascharacteristic Cx.

As for completeness,we are given, asusual, somepartial solution Sx and
want to exhibit a characteristic C0

x that is at least as good as the character-
istic Cx of Sx and which getscomputedfrom someC0

y and C0
z in the full sets

of characteristicsat y and z, respectively. Restricting Sx to Gy and Gz gives
partial solutionsSy at y and Sz at z; to their characteristicsCy and Cz, char-
acteristicsC0

y 4 Cy and C0
z 4 Cz are computedby the induction hypothesis.

The completenessof the path-decomposition join operation implies that at
each edge¹e ∈ ¹F , a path-decomposition characteristic ¹P 0

ē will be computed
from C0

y and C0
z that is smaller than the corresponding path-decomposition

characteristic in Cx. Labeling the trunk edgeswith these ¹P 0
ē producesa char-
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Figure 31: Removing the verticesof bagBx separatesthe graph into a compo-
nent G\Gx towardsthe root r of the tree decomposition and two components
in Gx \Bx.

acteristic C0
x 4 Cx. If the characteristic Cx of Sx has a degeneratetrunk,

then Cy and Cz will have degeneratetrunks as well. By the induction hy-
pothesis,Cy and Cz are computed at y and z, respectively, becausethere
is only a single characteristic with a degeneratetrunk. All vertices of Bx

must occur in a singlebag in Sx, so have |Bx| ≤ ` + 1 and the combination
procedureproducesCx.

Computing Solutions

Oncea characteristic of a tree decomposition hasbeencomputedat the root
of the backbone tree decomposition, we can follow the constructions of the
correctnessproofs to construct a tree decomposition of width `. The partial
solutions thus computed have size proportional to the number of vertices
of the respective subgraphs; therefore the tree decomposition at the root
has sizeO(n). Moreover, Bodlaenderand Kloks show how to compute this
tree decomposition in time O(n) by using a suitable representation for path
decompositions. This completesour discussionof the algorithm for shrinking
tree decompositions; armed with this important subroutine, we now attack
the tree-decomposition problem proper.

4.2 The Separator Approach

An outstanding property of graphs of treewidth k is that they have small
separators. In a rooted tree decomposition (T = (X,F ), {Bx}x2X) of G =
(V,E) there is a bag Bx so that removing all vertices in Bx disconnectsthe
graph into a component G\Gx and several components in Gx\Bx (Figure 31).
Intuitiv ely, choosing tree node x to be \near the center" of T meansthat
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removing Bx decomposesG into parts of balancedsize. Indeed, if we de¯ne
a balancedseparatorto be a set of verticesS whosedeletion from G leaves
components of at most 1

2
|V \ S| vertices,then G hasa balancedseparatorof

sizek+ 1: assumethat for all adjacent treenodesx andy wehave |Bx\By| = 1
and |By \ Bx| = 1 and that all bagshave sizek + 1 (a tree decomposition
of this form exists becauseG is a partial k-tree, seeProposition 7). Every
inner tree node of such a tree decomposition disconnectsG; we start at any
inner x and check for each neighbor y of x whether removing By from G
givesmore balancedcomponent sizesthan removing Bx from G. As long as
an improvement can be made, we repeat the procedurewith this neighbor.
At termination, no more than 1

2
(|V | − (k + 1)) of the verticescan be in any

component. It can also be shown that in any graph of treewidth k, there
existsa vertex set of sizek whoseremoval leavescomponents of sizeat most
2
3
(|V | − k) (see[Bod96b] for an overview of the relations betweendi®erent

kinds of balancedseparatorsand treewidth).
Sographsof boundedtreewidth have small separators,and someof those

separatorsare \central" bags of tree decompositions. A number of tree-
decomposition algorithms are basedon this observation, among them the
onesdescribed in [ACP87, Lag90, MT91, Ree92]. A naÄ³ve approach might
be as follows: Find a separator of sizek + 1, recursively compute tree de-
compositions of each component, and glue the resulting tree decompositions
together using the separatoras commonroot. The catch is that we have to
ensurethat in each partial tree decomposition, the verticesof the separator
occur all in onebag; otherwisewe have the sameproblem aswhen shrinking
tree decompositions by decomposing large bags locally. We will now look
into two ways of dealing with this issue.

The Algorithm by Arnb org, Corneil, and Proskurowski

Arnborg, Corneil, and Proskurowski [ACP87] obtained the ¯rst algorithm
algorithm for computing tree decompositions of width k with running time
polynomial in n by usingdynamic programmingon components of the input
graph G = (V,E). In a ¯rst stage, their algorithm determinesall size-k
vertex setsSi ⊆ V whoseremoval disconnectsthe graph; many such (not
necessarilybalanced)separatorsSi exist in every G of treewidth at most k,
sinceduring the construction of a k-tree supergraph of G, every new vertex
v is madeadjacent to all verticesof a k-cliqueK and deletingK disconnects
v from other vertices built on K. If Si coincideswith such a K, then the
components of G[V \ Si] have treewidth k; the idea is to decomposethem
by creating a table of all components of all separators{Si}1· i· s and to use
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dynamic programming to determinethe decomposability of the components
from the small onesup to the largest.

Let {Ci,j}1· j· ci
be the connectedcomponents of G[V \ Si] and Gi,j :=

G[Ci,j ∪Si]. If Si is the root bagof a tree decomposition, then for all 1≤ j ≤
ci, there existsa rooted tree decomposition of Gi,j with Si in the bag of root
ri,j. Conversely, if for somei, all Gi,j with 1≤ j ≤ ci can be decomposedin
this way, a tree decomposition of G can be constructed: create a new root
node r and a bag Br = Si, and for 1 ≤ j ≤ ci, link r to the root ri,j of the
tree decomposition of Gi,j. To ¯nd a tree decomposition of Gi,j comprisinga
bagwith Si, we creategraphsG0

i,j from Gi,j by making the subgraphinduced
by Si complete;by Lemma11, every tree decomposition of G0

i,j will be a tree
decomposition of Gi,j with all verticesof Si occurring in somebag. For all i
and j, we submit (G0

i,j, Si) to a list of subproblems.

When all Si have beenfound, there is a lot of overlapping to be expected
among the {G0

i,j}i,j, and the trick is to exploit the overlaps by solving the
subproblems(G0

i,j , Si) in the order of increasingsize. If a G0
i,j has size at

most k + 1, it hasa one-bagrooted tree decomposition; we attempt to cover
larger G0

i,j with clique Si with a number of smaller graphs G0
p,q that are

already known to be decomposable. In particular, we check for each v ∈
G0

i,j \Si whetherG0
i,j can be coveredby a family of decomposablesubgraphs

{G0
p,q}(p,q)2D with separatorsSp ⊂ Si ∪ {v} for all (p, q) ∈ D, so that the

G0
p,q only overlap on Si ∪ {v}. In this case,we create a root ri,j and a bag

Bri,j
= Si ∪ {v}, and for each (p, q) ∈ D, we link ri,j to the root rp,q of the

tree decomposition of G0
p,q. This yields a rooted tree decomposition of G0

i,j.

We prove by induction on the sizeof the subproblemsG0
i,j that every G0

i,j

of treewidth k will be decomposed: If G0
i,j has sizeat most k + 1 the trivial

one-bagtree decomposition is found. Otherwise, let Si be the separator
that gave rise to G0

i,j; since G0
i,j is a partial k-tree, a k-tree supergraph

of G0
i,j can be obtained by taking Si as the initial basis for adding some

vertex v and constructing k-trees {H`}1· `· m basedon the k-cliquesKu =
(Si ∪ {v}) \ {u}, u ∈ Si. If Ku is used as basis for H`, then removing
Ku separatesG. Hencethere exists a p = p(`) such that Sp = Ku and a
q = q(`) such that G0

p,q derives from H` by edgedeletion. G0
p,q is smaller

than G0
i,j becauseit does not include u; by the induction hypothesis, it is

successfullydecomposed. The {G0
p(`),q(`)}1· `· m cover G0

i,j and overlap only
on Si ∪ {v}, thereforethe algorithm ¯nds a tree decomposition of G0

i,j. If G
hastreewidth at most k, then it is a subgraphof a k-tree with a basisSi that
separatesG; we proved that a tree decomposition is found for each of the
connectedcomponents G0

i,j and that thesetree decompositionscanbemerged
into a tree decomposition of G. We have to consider

¡
n
k

¢
candidates for
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separators,and for each candidateS, we have to do work of order n to check
whether removing S leads to more than one connectedcomponent. There
are O(n ·

¡
n
k

¢
) = O(nk+1) subproblems(G0

i,j, Si), and potential coverscan be
examinedin time O(n) by usingappropriatepointer structures. Thereforethe
time complexity of the algorithm is O(nk+2). This is not quite asdevastating
as it may appear at ¯rst, as we will seein Section5.2.

Using Balanced Separators

We now return to balancedseparatorsand introduce the framework under-
lying someof the more sophisticatedalgorithms for computing tree decom-
positions. When each component has size lessthan a constant fraction of
the original graph's size,then using the procedurerecursively on the compo-
nents leadsto a recursiondepth of O(logn). The best algorithm to date for
¯nding suitable separatorshasbeendiscoveredby Reed[Ree92], who shows
how to ¯nd \approximate" separatorsin time O(n). To beat his O(n logn)
algorithm, a new idea like the one presented in the next sectionappearsto
be necessary.

Insteadof addingedgesto enforcethat certain verticesendup in the same
bag, the notion of a W -separator will allow us to specify the treatment of
the distinguishedverticeswhen the graph is cut. Given a graph G = (V,E)
and a vertex set W ⊆ V , we call S ⊆ V a W -separatorif every component
of G[V \ S] contains at most two thirds of the vertices from W . In other
words, the component size is measurednot by the total number of vertices
but by the number of verticesfrom W . The following theoremfrom [Ree92]
sets the stagefor a procedureto compute a tree decomposition of width at
most 4k + 3 or to decidethat the graph has treewidth greater than k.

Theorem 20.

(1) If G = (V,E) has treewidth k, then for any W ⊆ V , there is a W -
separatorof sizek + 1.

(2) If G contains for all W ⊆ V a W -separatorof sizek + 1, then G has
treewidth at most 4k + 3.

2

The ¯rst part of the theoremfollowsfrom the fact that either many verticesof
W are in a bag of sometree decomposition (choosethat bag asW -separator
of order k + 1) or we can ¯nd a bag in the tree decomposition such that at
most half of the verticesof W are in any subtree. We prove the secondpart
constructively by assembling a recursive function that actually computesa
tree decomposition of width at most 4k + 3. With each invocation, we pass
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asparametersa graphG and a vertex setW of sizeat most 3k+ 3 that must
be contained in a bag of the returned tree decomposition.

We start by calling a subroutinethat computesa W -separatorS; the way
S is computed is the distinguishing feature of the algorithms basedon this
approach. If there is no W -separator,then by case1 of the theorem,G has
treewidth greater than k. Otherwise, let Ci be the components of G[V \ S]
and let Gi := G[Ci ∪ S], i.e., the Gi are the di®erent components including
their overlap S. Obviously, theseare the graphs for the next recursion; the
Wi for the recursive invocationsconsistof the verticesthat W shareswith Gi

plus all of S, soWi := (W ∩Gi) ∪S. This is a reasonablede¯nition sincewe
can link the bagswith Wi to a new bag consistingof W ∪ S to combine the
tree decompositionsof the subproblems;luckily, the sizeof Wi is boundedby

|W ∩Gi| + |S| ≤
2
3
|W | + (k + 1) ≤ 2

3
(3k + 3) + k + 1 = 3k + 3

and that of W ∪ S is boundedby

(3k + 3) + (k + 1) ≤ 4k + 4

These inequalities provide an explanation for the \magic" values for the
width 4k + 3 in Theorem 20 and the bound 3k + 3 on |W |. It can also be
seenthat balancing the W -separatorsmore preciselycan get the bound on
the width closeto 3k + 2, but not smaller. Hencewe need to shrink the
output tree decomposition to the optimal width using oneapplication of the
algorithm by Bodlaenderand Kloks described in Section4.1. Beforewemove
on, we recapitulate the signi¯canceof usingW -separatorsinsteadof \plain"
separators. The latter do tear up the graph in suitably sized chunks, but
they fail to keepthe separatorsof subsequent recursionlevels closetogether
in the tree decomposition, so that S can serve both asa knot for the Gi and
asan interfaceto the other components of the graph at the next higher level.

4.3 The Algorithm by Bodlaender

A substantially di®erent approach for computing tree decompositions was
discovered by Bodlaender [Bod96a]; our presentation is basedon notes by
Hagerup [Hag98a]. The idea is to construct a recursive function that for
instances(G, k) with a graph G = (V,E) computesa tree decomposition of
G by calling itself at most once. If n = |V | is greater than someconstant C
with C > k, the algorithm proceedsin four stages,namely,

(1) reducing the input to a smaller graph,
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(2) recursively computing an optimal tree decomposition of the reduced
graph,

(3) patching the tree decomposition of the reduced graph into a non-
optimal tree decomposition of the input graph,

(4) applying the shrinking procedurefrom Section4.1 to convert the non-
optimal tree decomposition into an optimal one.

This is to be the skeleton of a linear-time algorithm; reducing the graph
in step (1) and operating on the tree decomposition in step (4) requires
linear time per recursionstep, so we must ensurethat the graph is reduced
su±ciently in each step to guarantee that the total work remains linear.
Bodlaendermeetsthis requirement by eliminating a constant fraction 1/d of
the vertices in step (1), so that there are O(logn) recursionstepsand for a
bound of cn on the work per recursionstepon a graph of n vertices,the total
work is boundedby

P
i¸ 0 c (1/d)i n = O(n). The key to the reduction step

is the observation that fusing pairs of adjacent verticeslike this

allows a tree decomposition of the reducedgraph to be transformed into a
tree decomposition of the original graph by replacing the new vertex by the
two old vertices in all bags. This givesa tree decomposition of the original
graph becauseall restored edgesare internal to a bag, and all other edges
are covered as before;every vertex occurs in a connectedcomponent of the
tree of bags,sincerestoredverticesoccur in the samecomponent asthe fused
vertex. If fusedverticesdo not participate a secondtime in a fusion, then a
width-k tree decomposition of the reducedgraph givesrise to a transformed
tree decomposition of width 2(k + 1)− 1 = 2k + 1.

Selecting pairs of adjacent vertices that can be fused simultaneously
amounts to computing a matching in G, that is, a set of edgesM ⊆ E
in which no two edgessharean endpoint. Finding many pairs can be done
by using a greedyalgorithm to compute a matching M to which no further
edgescan be added. Doessuch a maximal matching always have sizeO(n),
so that contracting all edgesin M reducesthe sizeof graph by a constant
fraction? It does not. In fact, we need to handle the caseof a small |M |
separately. As contracting edgesdoesnot help for small maximal matchings
M , we resort in this caseto another operation for reducing the sizeof the
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graph. We try to identify vertices v in G that are leaves in the k-tree of
which G is a subgraph; \leaves" in the sensethat none of the k k-cliques
that result from adding v during the construction of the k-tree is usedto add
a further vertex. Such vertices v have the property that there exists a tree
decomposition of G whereall of the (at most k) neighbors of v are contained
in a single bag. The idea is to remove v and augment the reducedgraph
by auxiliary edgesto enforcethat the neighbors of v are in any width-k tree
decomposition of the reducedgraph. When we have a tree decomposition of
the reducedgraph, a new bag with v and its neighbors can be linked to the
bag containing the neighbors, thus getting a tree decomposition of G.

To make this work, we have to show that for small maximal matchings
M , a large number of leaf vertices can be identi¯ed. Vertices of degree
one certainly qualify as leaf vertices,and we can repeatedly remove degree-
one verticesuntil noneremain. Sincelarge matchings also bene¯t from this
reduction, we perform this elimination step before the computation of M .
We seekfurther vertices for which all neighbors occur in a single bag in all
tree decompositions of graph G. In Chapter 2, we presented two lemmas
that give su±cient conditions for vertices to occur together in a bag in any
tree decomposition: Lemma 11 postulated that every clique occursin a bag,
irrespective of the size of the clique; and by Lemma 12, we know that for
vertex setsV1 and V2 ⊆ V that induce a completebipartite subgraphof G,
we can ¯nd in any tree decomposition either a bag containing V1 or a bag
containing V2. The usefulnessof Lemma12 becomesobvious in the following
consequence:

Lemma 21. If u, v ∈ V have at least k + 1 commonneighbors, then in any
tree decomposition of width at most k, somebag contains both u and v.

Proof. Vertices u and v on the one side and their common neighbors on
the other side induce a complete bipartite subgraph of G. By Lemma 12,
either u and v are in onebag, or their neighbors are. However, in the latter
case,we can add edgesbetweentheir neighbors without destroying the tree
decomposition; in particular, we can turn them into a completesubgraphof
sizeat leastk+ 1. Sinceu is adjacent to all of them, weactually havea clique
of sizeat leastk + 2, which contradicts the existenceof a tree decomposition
of width k: by Lemma 11, a (k + 2)-clique would be contained in a bag. 2

The plan is this: We will useLemma 21 to singleout verticeswhoseneigh-
bors occur in a singlebag in all tree decompositionsof G, sincesuch vertices
certainly are leaf vertices. Removing those vertices may add unwanted de-
greesof freedom to the neighbors, which we combat by adding new edges
to G and invoking Lemma 11. Remember that we are consideringthe case
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of a small matching M ; we let U denotethe set of endpoints of edgesin M
and treat verticesin U asan immutable skeleton from which we try to pluck
vertices outside of U |note that the neighbors of any vertex w ∈ V \ U all
lie in U becauseM is a maximal matching. For the purposeof analysis,we
¯x a rooted tree decomposition (T = (X,F ), {Bx}x2X) of G and give names
to the verticesoutside of U : w ∈ V \ U is a bridge vertex if it hasneighbors
u, v ∈ U that in the ¯xed tree decomposition do not occur together in any
bag; we call the pair {u, v} a witness for w. The other vertices from V \ U
are called internal vertices; for every pair {u, v} of neighbors of an internal
vertex, there exists a bag containing both u and v. Our goal is to identify
many vertices that are internal vertices in every tree decomposition of G.
We proceedas follows:

(1) Let A denotea table of integersindexed by unorderedpairs {u, v} of
verticesfrom U ; in A[{u, v}] wecount the number of commonneighbors
of u and v that are in V \U ; we assumethat A is initialized to contain
all zeroes.

(2) We step through all verticesw ∈ V \ U . If the degreeof w is at least
2k, we ignore it. Otherwise,we considerall pairs {u, v} of neighbors of
w and increment A[{u, v}]. The cut-o®value on the degreeof w serves
to bound the running time; e.g.,processinga w of degreeω(

√
n) takes

time ω(n), compromisingthe linear running time of onerecursionstep
and of the entire algorithm.

(3) We make a passthrough A, adding an edgebetweeneach pair of nodes
{u, v} for which A[{u, v}] ≥ k + 1. By Lemma 21, this doesnot invali-
date any tree decomposition of G.

(4) We step a secondtime through all w ∈ V \ U , again skipping vertices
of degreeat least 2k. If for all pairs {u, v} of w's neighbors we have
A[{u, v}] ≥ k + 1, then the neighbors form a clique becausewe have
addedthe necessaryedgesin (3). Knowing that the neighborswill stick
together in any tree decomposition, we check whether w hasdegreeat
most k and remove it in this case. In the other case|if w has degree
greaterthan k and for all pairs of its neighborsholdsA[{u, v}] ≥ k+ 1|
we have found a proof that the graph has treewidth greater than k.

Even a small maximal matching M can have size ­( n). If implemented in
a straightforward manner, A therefore has size ­( n2), so that initializing
and iterating over A would take time ­( n2). It is easyto avoid initializing
A and to iterate only over non-zeroentries, so we get a linear time bound.
Moreover, Bodlaendergivesa slightly more complicateddata structure that
manageswith spaceO(n).
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In a moment, we are going to take stock of how many verticesare left in
the graph. In anticipation of a constant reduction factor, we review the com-
plete algorithm: it eliminatesdegree-onevertices,¯nds a maximal matching,
and checks whether the matching is su±ciently large. If it is, contracting
the edgesin the matching, invoking the procedurerecursively, and expand-
ing the edgesagain givesa tree decomposition of width 2k + 1, which gets
narrowed down to width k using the shrinking algorithm. All theseopera-
tions take linear time. If the matching is too small, we add someedgesto G
and remove a number of vertices, recurse,and patch the previously deleted
verticesback. The secondcase,too, is of linear complexity, so the algorithm
computestree decompositions in time linear in n = |V | for k ¯xed. We can
amend the algorithm not only to compute tree decompositions, but also to
decideTreewidth: If a graph has treewidth greater than k, then at some
level in the recursionthe shrinking will fail, or a removablevertex hasdegree
greater than k, or the constant-size instancehas treewidth greater than k.

To de¯ne the thresholdsizeof M for branching into the ¯rst or the second
caseof the algorithm as well as to analyzethe in°uence of k on the running
time, we have to wrap up the argumentation for small matchings; then we
know the fraction by which the graph is actually reducedin each recursive
call. We bound the number of verticesleft: We did not touch verticesin the
matching, thereforewe needto count all of them. De¯ning m := |M | as the
number of edgesin the matching, this accounts for |U | = 2m vertices. In
step (2), we skipped verticesoutside of M of degreeat least 2k. If in all of
G, more than half of the verticeshad such a high degree,then G would have
more than nk edges,which by Proposition 8 is impossible.

After theseboundson the number of verticeswe explicitly disregard,we
estimate the number of vertices that rightly or inadvertently get ignored in
step (4). Bridge vertices will never qualify for removal in step (4), because
their neighbors are in at least one tree decomposition in di®erent bags, so
that Lemma21cannotbeapplicable. Weassumethat the tree decomposition
is rooted and againwrite T (v) for the subtreeof T formed by the tree nodes
whosebag contains v ∈ V . SinceT = (X,F ) is rooted, T (v) has a well-
de¯ned root r(v) ∈ X. For a ¯xed u ∈ U , considerthe bridge verticesw with
witnesses{u, v} (for arbitrary v ∈ U ) wherew is in the bagBr(u) of the root
r(u) of T (u). SinceBr(u) contains u, it can contain at most k bridge vertices
w; however, every bridge vertex must be in Br(u) for someu, hencethere can
be at most |U |k = 2mk bridge vertices.

Internal verticesescape our scrutiny if their neighbors cannot be turned
into a clique. We count the number of docking locations in U for internal
vertices. Within onebag, there are at most

¡
k+1
2

¢
possibilities to connectto

two vertices. How many di®erent bagscan there be? We ignore bags that
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are subsetsof other bagsand count the number of maximal bag sets with
respect to verticesfrom U . There can be no more than 2m maximal bag sets
sincethere are only 2m elements to start with. Thereforethere are at most
2m

¡
k+1
2

¢
= mk(k + 1) ways to dock an internal vertex, and to overlook an

internal vertex, its docking location must not beusedby morethan k internal
vertices in total, leading to a bound of mk2(k + 1) on the total number of
undiscovered internal vertices. Our calculation is summarizedbelow:

verticesin U : exactly 2m
high-degreevertices: at most n/2
bridge vertices: at most 2mk
overlooked internal vertices: at most mk2(k + 1)
total: at most m(k3 + k2 + 2k + 2) + n/2

We have traded one half the vertices of G against an expressiondepending
linearly on m. By solving

m(k3 + k2 + 2k + 2) =
n

4

for m, we get a threshold value of mt ≈ n/(4k3) to choosebetweenthe two
ways to shrink the graph. If the sizem of the maximal matching M doesnot
exceedmt, then the reduction amounts to

m(k3 + k2 + 2k + 2) + n/2
n

≤ mt(k3 + k2 + 2k + 2) + n/2
n

=
3
4
,

whereasif m > mt, contracting the edgesof the matching reducesthe sizeof
the graph by a factor of

n−m/2
n

≤ n−mt/2
n

= 1− 1
8(k3 + k2 + 2k + 2)

=:
1
d
,

that is, in both casesthe factor is bounded away from 1 (1 > 1/d > 3/4).
Examining the individual computation steps once more, we seethat each
step can be donein time O(kn+ S(n,2k + 1, k)), whereS(n, k, `) is the time
complexity of shrinking a tree decomposition of width k to width ` in a graph
with n vertices(seepage75). Altogether, this leavesus with a bound of

O

Ã
X

i¸ 0

k
n

di
+ S

³ n

di
,2k + 1, k

´
!

= O
³
k3

³
k + 2O((2k+1)2 log(2k+1)+(2k+1)2¢k)

´
· n

´

= 2O(k3) · n
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on the running time of Bodlaender'salgorithm for computing tree decom-
positions. Even though our analysis is far from being tight, we clearly see
that the bottleneck is the shrinking of tree decompositions. Observingthat
shrinking is only neededin the caseof large matchings, we could bias the
algorithm towards treating morematchingsassmall by raising the threshold
mt. Furthermore, Bodlaenderremarksin [Bod96a] that it is possibleto trade
to certain extent the complexity in k againstthe complexity in n by restoring
the contracted edgesof the matching M in multiple iterations. If in each bag
of the tree decomposition of the shrunken graph, only onefusion is reversed,
then the resulting tree decomposition haswidth at most k + 1|so we select
up to oneedgein each bag, restoreit, and shrink the resulting tree decompo-
sition of width at most k + 1 to width at most k. We repeat thesestepsuntil
all edgeshave beenrestored. How many iterations are required? We cannot
always freely selectone vertex in each bag to expand, therefore we will, in
general,needmore than k + 1 iterations. Yet we can ¯nd a (k + 1)-coloring
of the expandablevertices in time I(n, k) = nk using a greedy algorithm
and extract from it an independent set of expandablevertices that has size
|M |/(k + 1). Since |M | = O(n) and we chop o® a factor of k + 1 in each
iteration, O(logn) rounds su±ce. The running time of this algorithm is

O
¡
k3 logn (kn + I(n, k) + S(n, k + 1, k))

¢
= 2O(k3) · n logn,

but with smaller constants than before|in the shrinking subroutine, the
path-decomposition characteristicson the trunk edgesnow comefrom a set
of size Ck+1,k instead of C2k+1,k. Substituting k = 2 gives lower bounds
C3,2 ≥ 3.58 · 1014 as opposed to C5,2 ≥ 3.07 · 1022 (see also Table 1 on
page57).
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Chapter5

ComputingTreeDecompositions

5.1 Generating Test Cases

Evaluating the implementation of an algorithm meansmeasuringthe running
time on a largenumber of \uniformly" selectedsamplesfrom \t ypical" inputs.
Since we set out without a speci¯c application of tree decompositions, we
could not make any assumptionsabout the sourceof inputs. Therefore we
had to generate\random" graphsof a given sizeand a given bound on the
treewidth, so that we could investigate how tree-decomposition algorithms
compareon arbitrary input for various graph sizesand treewidths.

We begin our discussionon the generation of test caseswith a few re-
marks on the selectionof random inputs in general;we write In for the set of
binary representations of input objects of sizen, assumingthat every x ∈ In

haslength O(n logn), i.e., x canrepresent O(n) numbersof magnitudeO(n).
In most problemsin computer science,several di®erent input bit strings are
consideredequivalent: for Sat, we poseessentially the sameproblem when
we rename variables or reorder the clausesof a CNF formula. Similarly,
in many graph problems, the order in which the vertices are listed in the
input is irrelevant, that is, isomorphic graphs constitute the sameproblem
instance. Formally, the set In is partitioned into equivalenceclasses[x] of the
objects y that are equivalent to x; choosinga random input of a given length
then amounts to selectingan equivalenceclass[x] uniformly at random and
returning an arbitrary y ∈ [x]. Graphs G1 = (V1, E1), G2 = (V2, E2) are
called isomorphic, if there exists an isomorphism σ : V1 → V2 such that
(u, v) ∈ E1 ⇔ (σu, σv) ∈ E2. The equivalenceclassesof general (labeled )
graphsunder graph isomorphismare calledunlabeled graphs;likewise,there
are unlabeled trees and unlabeled rooted trees, the latter with the isomor-
phismsrestricted to leave the root vertex r invariant, σr = r. In Figure 32,
a representativ e of each unlabeledtree with four verticesis shown; Figure 33
lists the unlabeled rooted trees with four vertices. For thesethree typesof
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Figure 32: The unlabeled treeswith four vertices.

Figure 33: The unlabeled rooted trees with four vertices (roots shown in
black).

unlabeled graphsas well as for labeled trees, there are e±cient selectional-
gorithms [NW78, Wil81, Tin90], that is, given a sourceof random numbers,
thesealgorithms produce an arbitrary labeled graph (not always the same)
of an equivalenceclassthat is selecteduniformly at random.

As nice as such selectionproceduremay appear from a theoretical point
of view, judging the performanceof an algorithm basedon inequivalent test
casesentails a certain danger: an actual implementation is likely to depend
signi¯cantly on the order in which the input is presented. Even the [ACP87]-
algorithm (discussedin the next section), which iterates through all separa-
tors of the graph, shows deviations of almost 100%when the input graph is
permuted, ascan be seenin Figure 34. Nevertheless,we did extend selection
algorithms for labeled trees and unlabeled rooted trees to produce labeled
k-treesand unlabeled\ro oted" k-treesuniformly at random, assumingk and
the number of verticesn to be¯xed. However, our resultsdo not generalizeto
partial k-trees,and due to their minor theoretical and practical signi¯cance,
we refrain from presenting our approach in detail; su±ce it to say that there
is a bijection betweena labeledk-tree G and a tuple (T,R, l) consistingof a
labeledtree T = (X,F ), the speci¯cation of a \ro ot" (k+ 1)-cliqueR and an
edgelabeling l : F → {1, . . . , k}, which assignsan integer to every edgeof
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Figure 34: The running time of the [ACP87]-algorithm for 16randompermu-
tations of the graph depicted in Figure 35. Error bars indicate the greatest,
smallestand averagetime for running the sameinstancemultiple times; the
deviationsare causedby transient changesin the operating environment and
are obviously negligible.

Figure 35: A graphof treewidth 3 for measuringthe dependencyon the input
order of the [ACP87]-algorithm
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T . Becauseof this mapping, selectinga labeledk-tree uniformly at random
amounts to generatingsuch a tuple uniformly at random.

By a unlabeledrooted k-tree, we meanthe equivalenceclassof labeledk-
treesG under isomorphismsσ that map the verticesof a given (k + 1)-clique
R in G unto themselves,i.e., σv = v for all v ∈ R; it can be shown that rep-
resentativ esof every unlabeledrooted k-tree occur equally often in a certain
set of tuples (T,R, l) consistingof a representativ e T of an unlabeledrooted
tree, an arbitrary root clique, and an edgelabeling l from a certain subsetof
permitted edgelabelings. Choosing such a tuple uniformly at random and
constructing the corresponding labeledk-tree then givesa representativ e of
a uniformly chosenunlabeledrooted k-tree.

Our \grut" packageof graph utilities has programs for creating labeled
and unlabeled rooted trees uniformly at random, for creating random k-
trees using labeled trees as skeleton, for deleting a given number of edges
at random, and for randomly permuting the vertices of a graph. Further
information on this software is provided in SectionA.1 in the appendix.

5.2 The Algorithm by Arnb org, Corneil, and Proskurowski

Only the ¯rst tree-decomposition algorithm described in the previouschap-
ter, the O(nk+2) procedurefrom [ACP87], can do without the Bodlaender-
Kloks shrinking algorithm. In spite of its enormousasymptotic bound, our
implementation of the [ACP87]-algorithm did work quite well for k = 2, and
meaningful results could be obtained for k up to 4. Figures 36 and 37 show
the results on a few benchmarks. The test caseswereconstructedby gener-
ating for each n three random unlabeledrooted treeswith n− k nodes,and
using theseas skeletonsfor random k-trees. From those \maximal" graphs,
edgeswere deleted in bunchesof 10% of the k-tree's edges,getting 11 test
casesfrom each of the three skeletons,or 33 for each n. The tests were run
on the samecomputer as the path-decomposition algorithm (seepage60),
but with limits on running time (30 minutes) and on the main memory (597
megabytes to allow three tests to run concurrently). The statistics in Fig-
ures 36 and 37 show for each n and k the greatestmeasurement|no entry
meansthat either for this choice of n and k, at least one test run violated
the limits or that all runs had too small running time to yield meaningful
measurements.

Except for interrupting the tabulating of subproblemsas soon as a so-
lution is found and running the [ACP87]-procedureseparatelyon each con-
nectedcomponent of the input graph, no further optimizations were imple-
mented; in particular, no boundson k wereassumed.
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Figure 36: Running time in secondsof the [ACP87]-algorithm for di®erent
treewidths k, plotted against the number of verticesn.
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Figure 37: Memory consumptionin kilobytes of the [ACP87]-algorithm.
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Chapter6

Conclusions

6.1 Shrinking Tree Decompositions Is Not Feasible

The more advancedseparatoralgorithms and Bodlaender'slinear-time algo-
rithm depend heavily on a procedurefor reducing tree decompositions from
non-optimal bounded width to the minimum width. This procedure was
provided in Section 4.1 in form of the shrinking algorithm by Bodlaender
and Kloks, which is an extensionof their path-decomposition algorithm for
graphs supplied with a bounded-width tree decomposition. In Chapter 3,
we analyzedthis path-decomposition algorithm and found that the construc-
tion cannot be simpli¯ed much; becauseof its importance as a fundamental
building block of tree-decomposition algorithms, we put a large e®ort into
implementing it as e±ciently as possible. Despite our quite signi¯cant im-
provements such as the elimination of redundant characteristics,pipelining,
and caching, our experiments led us to the conclusionthat path decomposi-
tions of width greater than 3 cannot be computedusing this approach even
for graphsof 16 vertices. The tree-decomposition shrinking algorithm makes
extensive useof the combination proceduresfor path-decomposition charac-
teristics; hencethis algorithm, too, must be impractical for widths greater
than 3. Indeed, the number of potential characteristicsgrows even faster in
the caseof reducinga tree decomposition from width k to ` than in comput-
ing a path decomposition of width ` from a tree decomposition of width k:
the asymptotic boundson the number of characteristicsare

2Θ(k2 log k+k2 ¢̀ ) · n and 2Θ(k log k+k¢̀ ) · n,

respectively. In Chapter 4, we derived a lower bound of 3.58 · 1014 for the
maximum number of di®erent characteristics at a tree node when reducing
width-3 tree decompositions to width 2. This huge ¯gure strongly suggests
that even a single call to the Bodlaender-Kloksshrinking procedure is not
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feasible,much lessrepeatedinvocations as in Bodlaender'slinear-time algo-
rithm.

On the other hand, Sanders[San96]gives a linear-time algorithm for
computing tree decompositions of width 4 and he considersit to be practi-
cal; for widths below 4, simple graph-reduction algorithms were derived by
Arnborg and Proskurowski [AP86]. Hencewe concludethat neither tuning
the separator-basedtree-decomposition algorithms nor implementing Bod-
laender'salgorithm would extend the range of tractable problem instances
beyond the widths for which special-purposealgorithms exist.

6.2 Further Directions

We set out to investigate the practical value of tree-decomposition algo-
rithms of the most general type, which for any input graph G and any
requestedwidth k compute a tree decomposition of width k or state that
the graph has treewidth greater than k. The sobering result is that com-
puting optimal-width tree decompositions is|with today's algorithms and
computers|in tractable for widths greaterthan 4 and graphslarger than, say,
16vertices. Wealreadymentioned that for each valueof k up to 4, algorithms
basedon graph reduction have beenconstructed;Sandersclaimsthat despite
the needto di®erentiate betweensomeone hundred special cases,there are
no large hidden constants in the analysis of his algorithm. However, even
if it were not practical, the algorithms for treewidth up to 3 certainly are;
only six rules for rewriting graphs su±ce to de¯ne the graphs of treewidth
at most 3 as thosegraphsthat can be rewritten to the empty graph.

It wasbeyond the scope of this work to implement algorithms for particu-
lar treewidths, not least becausean e±cient implementation would probably
not be straightforward. Moreover, oncewe deviate from our original objec-
tiv eof examiningthe practicality of generaland completetree-decomposition
algorithms, there are plenty of alternative ways to proceed.For certain real-
world applications, tree decompositions of non-optimal width might be ac-
ceptableor further knowledgeabout the input could be usedto improve the
calculation of the boundsor to speedup the present algorithms or to devise
completelynewalgorithms. Moreover, in three-dimensionalspring-embedder
layouts of densek-trees,their \tree structure" appearsto unfold (Figure 38),
and this observation might help to develop useful heuristics. All theseap-
proachesrequire a thorough analysisof the concreteapplication to identify
further properties of the problem at hand; the huge constants arising from
the generaltechniquesof using tree decompositions leadus to the conclusion
that the generality of the treewidth theory makes it|without considerable
specialization|un usablein practice.
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Figure 38: Snapshotof a three-dimensional\Virtual-Realit y" renderingof a
3-tree. We have added a large grid for aiding orientation when navigating
through the graph usingstandardviewing software. Our implementation of a
spring-embedderlayout algorithm and a programfor translating graphswith
a layout into Virtual-Realit y scenesare part of the \graph utilities" package
described in the appendix.
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6.3 Comments on the Development Tools

The majorit y of the software developed as part of this work was written
in the C++ programming language[SE90]using LEDA, a library of e±cient
data typesand algorithms [MNSU98]. In this section,we addressdrawbacks
of this approach in the hope that our comments will be useful for future
experimental algorithm implementations. All things considered,we consider
C++ and LEDA to be amongthe best toolscurrently available, yet with much
potential for improvement. Joyner [Joy96] givesa comprehensive list of the
shortcomingsof the C++ languagein general; therefore we discussonly the
issuesthat arosein our programming with LEDA.

C++ Standardization

At the time of writing, the C++ standard (ISO/IEC 14882:1998)has been
o±cially approved for two months, though not yet published. Until the stan-
dardization e®ort, the C++ languageevolved through extensionsthat the
inventors of C++ at AT&T Research Labs made to their cfront compiler,
extensionsthat wereapproximately copiedby several compilervendors.Dur-
ing the processof standardization, which started in 1989,signi¯cant changes
were madeto the language,and subsequent drafts of the standard were fol-
lowedto a varying extent by the di®erent compilers. Consequently, it appears
that the standardization of C++ led for many years to a lessstable speci¯-
cation of the language,and this will changeonly slowly as vendorscatch up
with the ¯nal standard. Our programswritten with LEDA were a®ectedin
three ways by the evolution of the C++ language:

• Each compiler releasewith incompatible changesto the languagene-
cessitatedthe adaption of all source code. For example, the scope
of variable declarations in the for loop was changedfrom GNU C++
version2.5 to 2.6, making the code in Figure 39 illegal, whereasprevi-
ously, a redeclarationof i wasconsideredto be an error. More obscure
changes,such as the abolishment of \guiding declarations," the intro-
duction of the typename keyword, and modi¯cations to the resolution
of overloadedfunctions(i.e., functionswith the samenamebut di®erent
argument types)causedcompilation errors that werehard to diagnose.

• Releasesof LEDA always supported the compiler versionsthat were
current at that time. As a consequence,there is usually only a small
range of compiler versionswith which any given LEDA releaseworks;
hence,the \C ++ dialect" of our programsis largely determinedby the
choiceof the versionof LEDA.
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for (int i=0; i<10; ++i) {

// do something

}

for (i=0; i<10; ++i) {

// do something

}

Figure 39: Originally, variablesdeclaredin the headof a for loop belonged
to the surrounding scope, so the code snippet above was correct. In ISO
C++, however, i belongsto the scope of the body, so that it is undeclaredin
the headof the secondfor loop.

• The ISO C++ standard de¯nes classesfor basic data structures such
as arrays, lists, and sets. The accessto thesestructures using \STL
iterators" di®erssigni¯cantly from the \ LEDA style" of using macros
such as forall. In the early stagesof our implementation, LEDA did
not support the new style of accessingdata structures, so that the
interoperability with the new standard library was limited. Moreover,
the LEDA style of enumerating elements wasawkward to implement for
our own classes.It appearsthat in the current release,STL iterators
are, for the most part, supported.

C++ Compilation Speed

The great complexity of the C++ languageis re°ected by large compilation
times. As an example,recompilingafter making a changeto a certain source
¯le in the \tdecomp" project took well over half a minute on a SUN Ultra 1
workstation; this was with all compiler optimizations disabled. Even for
medium size test cases,compiler optimizations were highly desirable, but
enabling them increasedthe compilation time by a factor of three. When
changesinvolved header¯les, the delay was even greater becausea header
¯le is usually included by several source ¯les, each of which needsto be
recompiled.

Speci¯cally, our criticism is that in C++, small changesoften entail com-
pilation times that grow with the size of the project. The modi¯cation of
an inline function causesall clients of a classto be recompiled,even when
optimizations are disabled. The overheadof parsing library declarationsis
reducedby somecompilersusing \pre-compiled headers",yet onewould ex-
pect the compiler to ¯nd out whether a changea®ectsa classinterface and
thus dependent classes,and only in this caseto recompile the dependent
classes.However, C++ is designedtowards only examining onesource¯le at
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a time, all but precluding project-global analysis.

Tracking and Copying Objects

The memorymanagement of C++ turned out to be a substantial impediment
to implementing large algorithms e±ciently. Considerthe data structure for
characteristics of partial solutions in the generic tree-automaton algorithm
(Section 2.4). Combination proceduresconstruct C++ objects representing
such characteristics;an object may get inserted into the cache of the current
tree node, or get passedto the parent of the tree node, or be stored with a
partial solution that is beinggenerated.All in all, referencesto theseobjects
are kept in many placesand not all objects are treated the sameway; how-
ever, sincespaceis a scarceresourcefor the path-decomposition algorithm,
we needto releasethe memory occupiedby a characteristic soon after it is
not referencedanymore. The lifetime of the objects representing character-
istics is not determined by a static scope, so they need to be dynamically
allocated and dynamically freed. For dynamic memory management, C++
o®ersthe new and delete operators, which normally allocate and release
memory using the C functions malloc and free. In other words, the pro-
grammer has to ¯nd out when an object is no longer used, and then call
delete. For objects with such \div erse" lifetimes as characteristics, this is
a di±cult task; we were forced to count the referencesto each object and
disposeof it as soon as this count reached zero. Similar referencecounters
are manually implemented in many placesin current C++ libraries, such as
the GNU implementation of the ISO C++ string classand the LEDA classes
integer andrational. Nonetheless,this approach hastwo distinctivedraw-
backs: circular referencescannot be detected,and there is no uniform way
to implement referencecounting. One way to furnish referencecounting to
arbitrary classesis to designa referencetemplate ref<class>, which behaves
like a pointer to an object of classclass, but callsdelete on the object when
the last ref<class> referenceto it is discarded. This approach fails due to
clasheswith the type systemof C++; for instance, there is no way to make
ref<parent> a superclassof ref<child>. Analogousobstaclesrule out solving
the problem by bequeathingclasseswith a referencecounter from an ances-
tor classrefcountable and, in any case,the programmercannot be forced
to handle \ra w" pointers correctly.

When using LEDA|or, for that matter, any other library of data struc-
tures|the lack of a garbagecollector leadsto redundant copying of objects:
Inserting a large object, such as the representation of a characteristic, into a
LEDA list causesthe object to be copied into the set; LEDA cannot store
a pointer to the object becausethe original object might be delete-d just
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after the insertion. Removing the ¯rst element of a list and storing it in a
variable again involves a copy operation; worse, any object returned by a
function needsto be copied,aswe explain using the examplein Figure 40. A
is someclasswith a copy constructor and a constructor taking no argument;
the function main calls func, reserving spacefor the return value on the

A func()

{

A a1, a2;

// some computation

if (condition)

return a1;

else

return a2

}

main()

{

A result;

result = func().do_something();

}

Figure 40: Example of redundant copy operations.

stack. After func is entered, the constructor taking no argument is called
for the objects a1 and a2, with memory allocated on the stack frame of
func. At each of the return statements, the copy constructor is called with
a1 or a2 asparameterto createan object in the areareserved for the return
value. This copy operation could be avoided if it were clear at the entry of
func which object would be returned; in Pascal, for example, the implicit
return variable gets the nameof the function and so the problem is avoided.
A sophisticatedC++ optimizer might be able to save most copy-constructor
calls, yet the casualC++ programmeris probably not aware of this problem
and the compilerswe checked (GNU and Sun) did not optimize it away.

Pipelining

Pipelining is a programmingtechnique to avoid storing intermediate results,
to computeresults\just in time," and to parallelizeproducersand consumers
of data. To that end, subroutinesthat normally return list data structures
areconverted to computethe elements of the list oneby one. The caller does
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list<characteristic> combine(...)

{

loop_state i;

for (init(i); valid(i); next(i)) {

// construction of a candidate of a characteristic

if (found_characteristic) {

full_set.insert(new_characteristic);

}

}

return full_set;

}

Figure 41: A C++ function with a loop computing a setof full characteristics.

characteristic next_combination(loop_state &i, ...)

{

if (!initialized) {

init(i);

}

goto inside;

for (; valid(i); next(i)) {

// construction of a candidate of a characteristic

if (found_characteristic) {

return new_characteristic;

}

inside:

;

}

// all characteristics have been returned

return no_more_characteristics;

}

Figure 42: A construct for pipelining the loop in Figure 41. Each invocation
of this function returns one new characteristic or states that there are no
further characteristics.
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not enumeratethe elements of the list, but requestsfurther elements from the
subroutine, so that the list is never completely instantiated. Moreover, only
the elements of the list that areneededby the callerareactually computed;in
parallelizedsetting, the caller and the subroutinecanwork concurrently, i.e.,
while the caller processesoneelement of the list, the subroutine can already
produce the next. Pipelining is used on many levels of computing, such
as in arithmetic circuits of microprocessors[PH90] and in databasesystems
[SKS97].

Converting sourcecode to take advantageof pipelining requiressomeun-
clean workarounds in C++. Namely, converting a loop as in Figure 41 with
(possibly large) proceduresinit, valid and next necessitatesa construct
like that of Figure 42 where the variablesinitialized and i must be con-
served acrosssubsequent requestsfor the next characteristic. The goto can
be avoided by turning the for loop into a do {. . . } while-loop, however,
the problem of maintaining the state of the loop counter i remainsand gets
much worsefor nestedloops. It is possibleto usemultithreading in C++, but
the languagelacks coroutines[Mar80], which would allow an implementation
of pipelining that is both cleanand e±cient.

An Alternative

After investigating several programming languages,we found that the Ei®el
programming language[Mey92] remediedall the problems we encountered
in programming C++. It has a powerful object system with multiple and
repeated inheritance, exception handling, genericclasses(corresponding to
templates in C++), and garbagecollection. Among its unique featuresis the
support for \Programming by Contract," wherepreconditionsand postcon-
ditions of functions and class invariants are speci¯ed within the language,
allowing them to be inherited by functions in derived classesand extracted
by automatic documentation tools. The term \Programming by Contract"
stemsfrom the interpretation that whenobject A invokesmethod m of object
B, A guaranteesthat the parameterssatisfy the preconditionsof m and B is
committed to ensurethat the postcondition of m will be met and the class
invariant of B is preserved. Moreover, Ei®el requiresglobal program anal-
ysis to ensurecorrectness,which has the useful byproduct that all current
Ei®elcompilerssupport incremental compilation; hencerecompilation times
remain in relation to the changesmade. Finally, Ei®el doesnot have corou-
tines, but a languageextensionfor an object-oriented equivalent of coroutines
hasbeenproposedby Meyer [Mey97].

When we came to the conclusion that in C++, we could not improve
memory-management while maintaining the readability and extendibility of
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the sourcecode, we madean e®ortto port the path-decomposition algorithm
to Ei®el,but dueto time constraints, this project waseventually suspended|
the lack of a data structure library like LEDA could not be compensatedfor
by a one-mane®ort.
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AppendixA

Noteson the Software

Wepursuedseveral linesof development. In SectionA.1 wedescribeour tools
for graph generation,which draw on the techniquespresented in Section5.1.
Using the C++ languageand the LEDA library [MNSU98], we implemented
the [ACP87] tree-decomposition algorithm, the generictree-automatontech-
nique for solving problemson graphsof boundedtreewidth, and asinstances
of the latter, algorithms for Coloring and computing path decompositions.
Implementation noteson theseprogramsaregivenin SectionA.2. The source
code, some12,000lines of code, is included on electronicmedia with all o±-
cial copies;it is available as well on the Internet at

http://www.mpi-sb.mpg.de/~roehrig/dipl

The un¯nished port to the Ei®elprogramminglanguage(3,500linesof code)
is available on request.

A.1 Graph Utilities

We neededutilities to generateand manipulate a large number of graphsin
a scriptableenvironment. For this purpose,we createdthe \grut" packageof
commandline graph utilities. To ensureinteroperability with the \graphlet"
interactive graph editor [Him96] and LEDA, we chosethe GML ¯le format
[Him97] to store graphs. All programs in the grut package ful¯ll a narrow
purpose, such as outputting a random tree or annotating a graph with a
layout; they take their parametersfrom the commandline, read input from
the standard input and write output to the standardoutput. As an extension
to GML, they all maintain a log of changesmade to a graph, so that the
genesisof test casescanalwaysbedetermined. Wereproduceherethe README

¯le from the sourcecode.
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From: Hein Roehrig <hein@acm.org>
Time-stamp: "1998-09-23 11:20:29 roehrig"

COPYRIGHT

grut - GRaph UTilities
Copyright (C) 1998 Hein Roehrig

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or (at
your option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
USA

INTRODUCTION

This is a snapshot of the C++ and Perl command line graph utilities
developed for my master’s thesis. The underlying simple graph format
is GML, as described in

http://www.fmi.uni-passau.de/
archive/archive.theory/ftp/graphlet/GML.ps.gz

As an extension to GML, the utilities maintain a history of the
changes made to graph.

INSTALLATION

- Prequisites: GNU make, gcc 2.8 or egcs, perl 5. Optionally autoconf,
automake and libtool. LEDA is not used.

- in the following, the directory of this file will be referred to as
$srcdir.

- make a separate compilation directory, now referred to as $compdir

- configure the package
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cd $compdir
$srcdir/configure --disable-shared

If you want to use a different C/C++ compiler, do the following:

CC=/opt/egcs-1.0.1/bin/gcc CXX=/opt/egcs-1.0.1/bin/c++
$srcdir/configure --disable-shared

- cd $compdir; make

for debugging :
make CXXFLAGS="-pipe -g -Wall"

for profiling:
make CXXFLAGS="-pipe -O -fno-inline -DNDEBUG -pg -Wall"

for production:
make CXXFLAGS="-pipe -O3 -DNDEBUG -Wall"

RUNNING

All programs take their input from stdin and write the output to
stdout. Errors and other messages are sent to stderr. The programs
take a "-v" switch to increase verboseness, and those using random
numbers take a "-S integer" switch to define the seed. Other options
depend on the program and are given by running the program with the
"--help" flag (you are invited to have a look at the source code as
well).

Generation:
makepath generate a path of given length
makecactus generate a cactus of given size
rtree generate random trees

Modification:
tree2ktree generate a k-tree from a tree at random
thinout randomly delete edges
permute randomly permute nodes
id2label set the node labels to the node ids
label2id set the node ids from the node labels

Layout:
layout3d 3D spring embedder
gml2vrml convert a GML graph with 3D layout to VRML

Other:
graphstat give statistics of a graph
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A.2 Tree Decomposition and Path Decomposition

All C++ software for computing and verifying tree decompositions and path
decompositions is contained in the \tdecomp" package. An overview of the
distribution and installation instructions are contained in the README ¯le,
which follows.

From: Hein Roehrig <hein@acm.org>
Time-stamp: "1998-09-23 11:21:37 roehrig"

COPYRIGHT

tdecomp - Programs for Tree and Path Decomposition
Copyright (C) 1998 Hein Roehrig

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or (at
your option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
USA

INTRODUCTION

This is a snapshot of the C++ tree decomposition and path
decomposition programs developed for my master’s thesis. At some point
during development, I came to the conclusion that using C++ was not a
good idea since it has serious deficiencies such as missing garbage
collection. Unfortunately, I did not get around to re-implement
everything in Eiffel; however, the present code proves rather well
that the Bodlaender-Kloks algorithm is impractical.

If you would like to look at the source, the interesting parts are in
the following files:

tautomat.h contains the generic algorithm for solving problems using a
tree decomposition.

iseq.h, iseq.cc contain the code dealing with T-sequences.
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pdc.h contains the combination algorithms for path decomposition

coloring.cc contains the combination algorithms for k-COLORING.

tdecomp1.cc contains the the n^(k+2) tree decomposition algorithm by
Arnborg, Corneil and Proskurowski.

The primary benchmarking tools are

pdcpathG: scheduler for series of benchmarks

cfman: configuration manager for executing the same test suite on
multiple variations of the same algorithm

ppac: measures the resource usage (elapsed wall clock time, CPU
cycles, memory consumption)

INSTALLATION

- Prequisites: GNU make, LEDA 3.7, gcc 2.8 or egcs. Optionally: perl
5, autoconf, automake and my grut graph utilities. The sources can
be back-ported to LEDA 3.5 and 3.6 without much work; however,
earlier versions of gcc and most other C++ compilers don’t do
because they do not support features like member templates. Note
also that Quantify up to version 4.2 does not work with gcc 2.8 (I
had to learn it the hard way...).

- in the following, the directory of this file will be referred to as
$srcdir. The location of LEDA will be referred to as $ledadir.

- make a separate compilation directory, now referred as $compdir

- configure the package

cd $compdir
$srcdir/configure --with-leda=$ledadir

if LEDA is installed in $ledadir/include and $ledadir/lib, or

$srcdir/configure --with-leda-include=/LEDA/INSTALL/incl
--with-leda-lib=/LEDA/INSTALL/solaris/g++/lib

If you want to use a different C/C++ compiler, do the following:

CC=/opt/egcs-1.0.1/bin/gcc CXX=/opt/egcs-1.0.1/bin/c++
$srcdir/configure --with-leda=$ledadir

- cd $compdir; make

for debugging :
make CXXFLAGS="-pipe -g -Wall -Wno-reorder"
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for profiling:
make CXXFLAGS="-pipe -O -fno-inline -DNDEBUG

-DLEDA_CHECKING_OFF -pg -Wall -Wno-reorder"

for production:
make CXXFLAGS="-pipe -O3 -DNDEBUG

-DLEDA_CHECKING_OFF -Wall -Wno-reorder"

- optionally (may need huge amounts of memory/time):

make check

RUNNING

- Note: numbers referring to vertices in the output are the values
from the GML "id" field.

- At the beginning of the individual source files, debugging and other
options can be set via preprocessor directives

- For running the programs, the LD_LIBRARY_PATH variable probably
needs to point to the location of the LEDA DLLs. For the test and
benchmark scripts, you should also set TIMECMD and srcdir. Of
course, all shell variables need to be exported to the environment.

- All programs dump core on errors and on ^C. Therefore you should
consider to set ulimit -c0 to switch off core dumps.

- All programs write their output to stdout and diagnostic messages to
stderr. All programs take the "-v" switch to increase verboseness.

- The tdecomp and the pdecomp programs either compute or verify tree
decompositions/path decompositions. Verify mode is specified with
the "-V" switch; without this switch, computation mode is selected.
For computation and optionally for verification, a "-k integer"
switch can be given to indicate the required width of the
decomposition.

tdecomp -vk2 graph1.gml > graph1-tdc.gml

computes a tree decomposition of width 2 of graph 1, with lots of
information during the computation, and with the output tree
decomposition written to graph1-tdc.gml.

pdecomp -vk3 graph1.gml graph1-tdc.gml > graph1-pdc.gml

computes a width 3 path decomposition of graph1.gml using the tree
decomposition graph1-tdc.gml, and write the output to
graph1-pdc.gml.

111



tdecomp -vVk2 graph1.gml graph1-tdc.gml

verbosely verifies the tree decomposition, and

pdecomp -vVk3 graph1.gml graph1-pdc.gml

verifies the path decomposition.

- The coloring program works similarly, except that the output
consists of a coloring and the -k parameter indicates the number of
permitted colors.

- The file format for tree decompositions is as follows: The tree is
written out as a GML graph, and nodes of the tree have a GML keyword
"bag" of type "list", in which the graph vertices in the bag of that
tree node are given. E.g.

graph [
directed 0
node [ id 0 bag [ node 7 node 100 ] ]
node [ id 1 bag [ node 4 node 7 ] ]
node [ id 2 bag [ node 4 ] ]
edge [ source 0 target 1 ]
edge [ source 1 target 2 ]

]

would be a (width 1) tree decomposition of graph

graph [
directed 0
node [ id 4 ]
node [ id 7 ]
node [ id 100 ]
edge [ source 4 target 7 ]
edge [ source 7 target 100 ]

]

- For benchmarking, perl and grut are needed. The test cases are
generated using make* scripts and executed using the corresponding
pdc* scripts. If you are reading this not much later than summer
1998, beware that the dimensions of the test cases are chosen to go
to the limit of the largest machine I had access to.

GRAPHS

test cases for tree decomposition verification
----------------------------------------------
g000.gml t000.gml
g001.gml t001.gml
g002.gml t002.gml
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test cases for tree decomposition computation
---------------------------------------------
g003.gml t003.gml
g004.gml t004.gml
g005.gml t005.gml
g006.gml t006.gml
g007.gml t007.gml
g008.gml t008.gml
g009.gml t009.gml
g010.gml t010.gml
g019.gml t019.gml

test cases for coloring (tree automaton)
----------------------------------------
g003.gml t003.gml
g011.gml t011.gml
g011.gml t012.gml

test cases for path decomposition
---------------------------------
g013.gml t013.gml handcrafted, 6 nodes, pathwidth 2
g016.gml t016.gml from path20, width 2, not thinned out
g020.gml t020.gml pathwidth 3, treewidth 3, 11 nodes
g022.gml t022.gml tree of 5 nodes in Y form
g023.gml t023.gml cycle of 5 nodes with two "dangling" nodes
g025.gml t025.gml based on g016.gml, with 1/4 of the edges removed
g026.gml t026.gml graph consisting of 4 stacked triangles, tw 2, pw 3
g032.gml t032.gml test case for single split error in computing results
g038.gml t038.gml for profiling, path 128, width 2, 25% deleted

misc graphs
-----------
g015.gml t015.gml generated, treewidth 4
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preliminary, 36{37
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GateMatrixLayout, 30

HamiltonianCircuit, 20

IndependentSet, 6{10, 21{22,26
induction on a tree, 23
internal vertex, 87
isomorphic,91

k-tree, 17

leaf vertex, 86

node, 15
forget, 22
introduce,22
join, 22

start, 22

partial k-tree, 17
partial solution, 20
path decomposition, 29, 32
Pathwidth, 26, 29
pathwidth, 29
pipelining, 27, 57, 58, 102

reducedbag sequence,34
rewriting tree decompositions, 18,

22, 26

separators,80

(total) k-tree, 17
tree automaton, 23{28, 57,73,101,

106
tree decomposition, 15{16

rooted, 16
tree node, 15
Treewidth, 18, 88
treewidth, 16
trunk, 74

degenerate,75
T -sequences,42{43, 58

U-sequences,42
utilization sequence,36, 42

vertex, 15
VLSI design,29
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